Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That density is the mass of water per unit volume, usually stated in grams per cubic centimeter (gm/cm3), but may also be measured in pounds per gallon (lb/gal), pounds per cubic foot (lb/ft3), and kilograms per cubic meter (kg/m3.) density of fresh water is taken to be 1.0.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

SAZU, Ljubljana
Acta carsologica, 2000, Vol 29, Issue 2, p. 35-50
The evolution of karst and caves in the Konûprusy region (Bohemian Karst, Czech Republic), Part III: Collapse structures
Abstract:

Vertical and subvertical pipes are circular to ovate in shape with diameters from 2-4 m up to tens of metres and with proven depth up to 82 m. Some of them terminate by horizontal cave levels at depth. Pipes are filled with complicated sedimentary sequences with clearly developed collapse structures. The fill is composed of pre-Cenomanian, Cenomanian-Turonian and Tertiary deposits. Internal structures of the fill indicate multi-phase collapses. Cretaceous and pre-Cretaceous deposits are often subvertical with chaotic internal texture. In the centre of some of pipes, there are traces of younger collapses, most probably induced by continuing karstification and suffosion at depth. Tertiary deposits overlay the Cretaceous ones unconformably; they show gentler centripetal inclination, but in places they fill the central parts of collapsed fill. The origin of solution pipes is connected with hydrothermal activity most probably during Paleogene to Miocene, when the surface of limestones was still covered by slightly eroded cover of Upper Cretaceous platform sediments. Hydrothermal karst forms developed up to the surface of limestones as the piezometric level was situated within the Cretaceous cover. After the lost of buoyancy support of water, sedimentary cover started to move (collapse) down.