Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That narrow is a passage of restricted width between two caves or hollows in the karst underground; often not readily traversable [20]. synonyms: (french.) etroiture; (german.) enge; (greek.) steno perasma; (italian.) strettoia; (russian.) laz; (spanish.) laminador, gatera; (turkish.) agiz gecit; (yugoslavian.) sutjeska, klisura, soteska.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Karst Waters Institute, Leesburg, Virginia
Hypogene Cave Morphologies. Selected papers and abstracts of the symposium held February 2 through 7, 2014, San Salvador Island, Bahamas. Karst Waters Institute Special Publication 18, 2014, p. 27-27
MODELING SPELEOGENESIS USING COMPUTATIONAL FLUID DYNAMICS: POTENTIAL APPLICATIONS TO HYPOGENE CAVES
Abstract:
Numerical models of speleogenesis typically simulate flow and dissolution within single fractures or networks of fractures. Such models employ fracture flow and pipe flow equations to determine flow rates and only consider average velocities within each fracture segment. Such approximations make large scale simulations of speleogenesis tractable. However, they do not allow simulation of the formation and evolution of micro- or meso-scale cave passage morphologies. Such morphologies are frequently studied within a field setting and utilized for the interpretation of the speleogenetic processes that formed the cave. One classic example is the formation of scallops in cave streams with turbulent flow. Scallops are used to interpret past flow velocities and directions. However, a recent analysis of the theory of limestone dissolution in turbulent flow conditions suggests a discrepancy between theory and reality concerning the formation of limestone scallops (Covington, in review). Similarly, the only attempt to numerically simulate flute formation in limestone found that the flute forms were not stable (Hammer et al., 2011). Motivated by these puzzles, we are developing a computational fluid dynamics (CFD) framework for the simulation of the evolution of dissolution morphologies.

While this project was initially conceived to better understand dissolution in turbulent flow, the tools being developed are particu­larly well-suited to examine a variety of other questions related to cave morphology on the micro- and meso-scales. There has been significant recent discussion about the interpretation of features that are diagnostic of hypogenic or transverse speleogenesis, such as the morphological suite of rising flow defined by Klimchouk (2007). Other authors have suggested that such forms can be found in a variety of settings where confined flow is not present (Mylroie and Mylroie, 2009; Palmer, 2011). We propose that simulation of such forms using a CFD speleogenesis code will allow a more complete understanding of the connections between process and form, because in such simulations the processes occurring are well-known, well-defined, and also can be adjusted within controlled numeri­cal experiments, where relevant parameters and boundary conditions are systematically varied.

The CFD framework we are developing is based on the Lattice Boltzman method (Chen and Doolen, 1998), which is a popular tech­nique for modeling the mechanics of complex fluids, including fluid mixtures, reactive transport, porous media flow, and complex and evolving domain geometries. With this framework it is straightforward to simulate many of the processes occurring in hypogene settings, including complex fluid flows, dissolution, solute and heat transport, and buoyancy-driven flow. Furthermore, this modeling framework allows these processes to be coupled so that their interactions and feedbacks can be explored. With the suite of capabili­ties provided by this framework, we can begin to numerically simulate the processes occurring in hypogene speleogenesis, including the driving mechanisms and the role of buoyancy-driven flow and its relationship with the morphological suite of rising flow. In the spirit of a workshop, this work is presented as in-progress, in the hopes that it will stimulate discussion on potential applications of the model being developed.