KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Acta carsologica, 2013, Vol 42, Issue 2, p. 213-225
Biological Control on Acid Generation at the Conduit-Bedrock Boundary in Submerged Caves: Quantification through Geochemical Modeling
Herman Janet S. , Hounshell Alexandria G. , Franklin Rima B, Mills Aaron L.
Abstract:
No-mount Cave, located in wekiwa Springs State Park in central Florida, USA, is an aphotic, submerged, freshwater cave in which large colonies of sulfur-oxidizing bacteria live in filamentous microbial mats. Upwardly discharging groundwater enters the cave from the Upper Floridan aquifer, specifically the Eocene-aged Ocala Limestone. we undertook a combined field, laboratory, and modeling study in which we sought to determine the amount of calcite dissolution attributable to the generation of protons by microbially mediated sulfide oxidation. The chemical compositions of groundwater within the limestone formation collected through a newly designed sampling device and of water in the cave conduit were used in geochemical modeling. we used the reaction-path model PHREEqCI to quantify the amount of calcite dissolution expected under various plausible scenarios for mixing of formation water with conduit water and extent of bacterial sulfide oxidation. Laboratory experiments were conducted using flow-through columns packed with crushed limestone from the study site. Replicate columns were eluted with artificial groundwater containing dissolved HS- in the absence of microbial growth. without biologically mediated sulfide oxidation, no measurable calcite dissolution occurred in laboratory experiments and no additional amount of speleogenesis is expected as formation water mixes with conduit water in the field. In contrast, significant calcite dissolution is driven by the protons released in the biological transformation of the aqueous sulfur species. Although a range of results were calculated, a plausible amount of 158 mg Ca2+ released to conduit water per liter of groundwater crossing the formation-conduit boundary and mixing with an equal volume of conduit water was predicted. Our modeling results indicate that significant cave development can be driven by microbially mediated sulfide oxidation under these hydrogeochemical conditions
No-mount Cave, located in wekiwa Springs State Park in central Florida, USA, is an aphotic, submerged, freshwater cave in which large colonies of sulfur-oxidizing bacteria live in filamentous microbial mats. Upwardly discharging groundwater enters the cave from the Upper Floridan aquifer, specifically the Eocene-aged Ocala Limestone. we undertook a combined field, laboratory, and modeling study in which we sought to determine the amount of calcite dissolution attributable to the generation of protons by microbially mediated sulfide oxidation. The chemical compositions of groundwater within the limestone formation collected through a newly designed sampling device and of water in the cave conduit were used in geochemical modeling. we used the reaction-path model PHREEqCI to quantify the amount of calcite dissolution expected under various plausible scenarios for mixing of formation water with conduit water and extent of bacterial sulfide oxidation. Laboratory experiments were conducted using flow-through columns packed with crushed limestone from the study site. Replicate columns were eluted with artificial groundwater containing dissolved HS- in the absence of microbial growth. without biologically mediated sulfide oxidation, no measurable calcite dissolution occurred in laboratory experiments and no additional amount of speleogenesis is expected as formation water mixes with conduit water in the field. In contrast, significant calcite dissolution is driven by the protons released in the biological transformation of the aqueous sulfur species. Although a range of results were calculated, a plausible amount of 158 mg Ca2+ released to conduit water per liter of groundwater crossing the formation-conduit boundary and mixing with an equal volume of conduit water was predicted. Our modeling results indicate that significant cave development can be driven by microbially mediated sulfide oxidation under these hydrogeochemical conditions