KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
NSS
Journal of Cave and Karst Studies, 2006, Vol 68, Issue 3, p. 107-114
Al-Daher Cave (Bergish), Jordan, the first extensive Jordanian limestone cave: a convective Carlsbad-type cave?
Kempe S. , Almalabeh A. , Alshreideh A. , Henschel Hv.
Abstract:
In spite of the vast limestone area present in Jordan, no karstic caves to speak of were known there until 1995 when Al-Daher Cave was discovered. The cave is situated east of Bergish Reserve for Ecotourism in the mountains of Bergish at about 830 m above sea level. The cave formed in the Wadi As Sir Limestone Formation of Upper Cretaceous age. It is a maze developed along NW-SE and NE-SW striking joints which owe their existence to the Dead Sea Transform Fault situated a few kilometers to the west of the cave. Rooms, with a total area of 1750 m2, were formed within a square of 70 × 70 m. The cave is constrained to certain limestone strata, laminated and non-laminated, divided by four chert layers that form distinctive markers throughout the cave. Chert nodules occur also within the limestone layers. The cave formed phreatically exclusively by dissolution within a small body of rising and convecting water. It is suggested that the very localized solution capacity derived from the oxidation of either H2S, or possibly even CH4, by oxygen present near the former water table. Thus, Al-Daher Cave may have formed by a process similar to that which formed the Guadalupe Mountain caves, New Mexico, among them Carlsbad Cavern. The altitude of the cave suggests that it may be as old as upper Miocene. The cave contains several relict generations of speleothems but also active forms. The local government is hoping to develop the cave into a show cave; it would be the first in Jordan.
In spite of the vast limestone area present in Jordan, no karstic caves to speak of were known there until 1995 when Al-Daher Cave was discovered. The cave is situated east of Bergish Reserve for Ecotourism in the mountains of Bergish at about 830 m above sea level. The cave formed in the Wadi As Sir Limestone Formation of Upper Cretaceous age. It is a maze developed along NW-SE and NE-SW striking joints which owe their existence to the Dead Sea Transform Fault situated a few kilometers to the west of the cave. Rooms, with a total area of 1750 m2, were formed within a square of 70 × 70 m. The cave is constrained to certain limestone strata, laminated and non-laminated, divided by four chert layers that form distinctive markers throughout the cave. Chert nodules occur also within the limestone layers. The cave formed phreatically exclusively by dissolution within a small body of rising and convecting water. It is suggested that the very localized solution capacity derived from the oxidation of either H2S, or possibly even CH4, by oxygen present near the former water table. Thus, Al-Daher Cave may have formed by a process similar to that which formed the Guadalupe Mountain caves, New Mexico, among them Carlsbad Cavern. The altitude of the cave suggests that it may be as old as upper Miocene. The cave contains several relict generations of speleothems but also active forms. The local government is hoping to develop the cave into a show cave; it would be the first in Jordan.