Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That barrier spring is see spring, barrier.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

NSS
Journal of Cave and Karst Studies, 2007, Vol 69, Issue 2, p. 351-358
Oxidation-reduction chemistry of Lechuguilla Cave seepage
Abstract:
Groundwater generally becomes increasingly reduced (decreasing Eh) with depth from the soil surface, and therefore seepage is a potential source of dissolved Mn, Fe, and NH4 to caves. In Lechuguilla Cave, both abiotic and biotic processes have contributed to the origin of a vast array of secondary speleogenetic features which are enriched in Fe and Mn oxides. Existing chemical and physical properties of Lechuguilla Cave pool water indicates oxidizing conditions, with dissolved Fe and Mn below detection, and N existing primarily as NO3. However, the redox chemistry of the cave seepage has not been well-studied. The objective of this study was to characterize the redox status of Lechuguilla Cave seepage and to test the hypothesis that seepage entering the cave from the overlying vadose zone is a potential source of dissolved Fe, Mn, and inorganic N (as both NH4 and NO3). If present in seepage, Fe, Mn, and NH4 will oxidize in the cave environment, resulting in non-detectable concentrations in cave pools. Seepage was collected from eight locations in the cave and analyzed for field parameters (pH, EC, dissolved O2(g), Eh, temperature) and concentrations of dissolved Fe (Fe2+ + total Fe), Mn, NO3 + NO2-N, and NH4-N. Results indicate that low organic C concentrations prevent the occurrence of complete anaerobic conditions in seepage, but the concentrations of Mn and NH4 indicate that slightly reducing conditions can exist. Iron concentrations were below detection (,0.06 mg L21) in all samples, and N existed primarily as NO3. Field-measured Eh values obtained using a Pt electrode (Ehm) did not correlate with computed Eh values for various redox couples (Ehc), and the poor agreement between Ehc values for the different couples indicates the absence of redox equilibria in the samples. Rather than characterization of redox status according to Eh, seepage is classified as ranging from oxic to suboxic. This redox classification indicates that Lechuguilla Cave seepage can generally be expected to contain low concentrations of organic C and dissolved Mn, dissolved O2(g) ranging from 1 mM to .30 mM, but with Fe below typical analytical detection limits.