KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Chemical Geology, 1990, Vol 86, Issue 1, p. 65-74
STABLE ISOTOPES IN CAVE POOL SYSTEMS - CARLSBAD-CAVERN, NEW-MEXICO, USA
Ingraham N. L. , Chapman J. B. , Hess J. W. ,
Abstract:
The stable isotopic ratios of drip water, pool water and water vapor collected in remote areas of Carlsbad Cavern, New Mexico, were used to develop a conceptual model of the hydrologic conditions of the cave pools. When considered in terms of open and closed pool systems, the data indicate that the pools in Carlsbad Cavern appear to leak more water than they evaporate. The pools in Carlsbad Cavern range between -43 and -31% in delta-D, -7.4 and -5.9% in delta-O-18, and have EC-values of 365-710 mu-S cm(-1). The water vapor is consistently 80-82% more depleted in D than associated pool water and appears to be under direct isotopic control by the pools. Most of the drip water ranges between -51 and -44% in delta-D, between -8.0 and -6.9% in delta-O-18, and have EC-values of 310-350 mu-S cm(-1), regardless of location of collection in the cave. Drip water collected on popcorn formations (which in this case are formed by evaporation of wall seep) have stable isotopic compositions similar to local pool water; however, they have EC-value of up to 1060 mu-S cm(-1). In addition, a small, closed pool near the Lake of the Clouds has stable isotopic compositions similar to those of the Lake and elevated EC-values of up to 9500 mu-S cm(-1). The degree of stable isotopic enrichment that evaporating waters can obtain in the Cavern is limited by exchange with the water vapor which, in turn, appears to be controlled by the pools
The stable isotopic ratios of drip water, pool water and water vapor collected in remote areas of Carlsbad Cavern, New Mexico, were used to develop a conceptual model of the hydrologic conditions of the cave pools. When considered in terms of open and closed pool systems, the data indicate that the pools in Carlsbad Cavern appear to leak more water than they evaporate. The pools in Carlsbad Cavern range between -43 and -31% in delta-D, -7.4 and -5.9% in delta-O-18, and have EC-values of 365-710 mu-S cm(-1). The water vapor is consistently 80-82% more depleted in D than associated pool water and appears to be under direct isotopic control by the pools. Most of the drip water ranges between -51 and -44% in delta-D, between -8.0 and -6.9% in delta-O-18, and have EC-values of 310-350 mu-S cm(-1), regardless of location of collection in the cave. Drip water collected on popcorn formations (which in this case are formed by evaporation of wall seep) have stable isotopic compositions similar to local pool water; however, they have EC-value of up to 1060 mu-S cm(-1). In addition, a small, closed pool near the Lake of the Clouds has stable isotopic compositions similar to those of the Lake and elevated EC-values of up to 9500 mu-S cm(-1). The degree of stable isotopic enrichment that evaporating waters can obtain in the Cavern is limited by exchange with the water vapor which, in turn, appears to be controlled by the pools
Keywords: area, areas, carlsbad, carlsbad cavern, carlsbad-cavern, cave, cavern, conceptual model, conceptual-model, delta-o-18, desert, drip water, enrichment, exchange, isotope, isotopes, isotopic composition, karst, lake, mexico, model, new-mexico, range, ratio, ratios, seepage, stable isotope, stable isotopes, stable-isotope, system, systems, term, time, times, usa, water, water resources, water-vapor, waters, zone,