Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That swale is a marshy depression or depression in a ground moraine [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Economic Geology, 2000, Vol 95, Issue 1, p. 1489-1504
Age of the Sherman-Type Zn-Pb-Ag Deposits, Mosquito Range, Colorado
Abstract:
The Sherman-type Zn-Pb-Ag dolomite deposits in central Colorado are hosted in dolostones of the Early Mississippian Leadville Formation. Paleomagnetic analysis, using progressive alternating field and thermal demagnetization and isothermal remanent magnetization acquisition methods, was performed on specimens from samples at 37 sites in the Sherman-type Continental Chief, Peerless, Ruby, Sacramento, and Sherman deposits, in their host rocks, in the 72 Ma Pando Porphyry sill(s) and in the ~40 Ma Leadville-type Black Cloud massive sulfide deposit. Paleomagnetic fold, contact, and breccia tests were performed to test for the antiquity of the magnetizations. The results are interpreted to indicate that the Leadville carbonates were regionally dolomitized at ~308 {} 6 (1{sigma}) Ma in the Early Pennsylvanian and that the Sherman-type deposits were emplaced at ~272 {} 18 (1{sigma}) Ma during the Early Permian after northeast-trending block faulting, karstification, and ~4 {} 1 km of sedimentary burial, possibly as the result of subsurface gravity-driven fluid flow related to the Ouachita-Marathon orogen. Following late Ouachita-Marathon or earliest Laramide (Late Cretaceous) folding, the remanence in the Sherman-type deposits and the Leadville dolostone rocks within the contact alteration zone of the 72 Ma Pando Porphyry sill(s) was reset to acquire a Late Cretaceous normal characteristic remanent magnetization. Thereafter the Black Cloud Leadville-type massive sulfide deposit was magnetized in the Eocene to acquire a reversed polarity characteristic remanent magnetization that was not found in the Sherman-type deposits