KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Exploration and Mining Geology, 1999, Vol 8, Issue 0, p. 21-42
The Vazante zinc mine, Minas Gerais, Brazil; constraints in willemitic mineralization and fluid evolution
Lena Virginia Soares Monteiro, Jorge Silva Bettencourt, Baruch Spiro, Rodnei Graca, And Tolentino Flavio De Oliveira
Abstract:
The Vazante Mine is located in the Vazante District, the largest zinc district in Brazil. The Vazante deposit consists dominantly of an unusual willemitic ore. Small sulfide bodies are tectonically imbricated with the willemitic ore, within the Vazante shear zone. Structural styles of deformation and petrographic and isotopic evidence indicate that willemitic mineralization and deformation occurred synchronously during the Neo-Proterozoic. Various generations of hydrothermal veins and hydraulic breccias may pre-date, accompany and overprint the mineralization. Ore-formation temperatures are deduced from stable isotope geothermometry and mineral chemistry of both sulfide bodies and willemitic ore. Temperatures during the main stage of mineralization range from 206 degrees C to 294 degrees C (willemitic ore) and 317 degrees C (sulfides), and reflect the prevailing metamorphic conditions within the shear zone. The fluid from which the gangue minerals of the sulfide bodies precipitated (at 250 degrees C) had an oxygen isotopic average value of delta 18 O = +19.4 per mil. This value appears to reflect the interaction of metamorphic fluid with the carbonate rocks of the Vazante formation. At 250 degrees C, the fluid in equilibrium with the vein mineral phases and willemitic ore assemblage exhibits a uniform oxygen isotopic composition, with an average value of delta 18 O = +11.5 per mil. The positive linear covariance of delta 18 O and delta 13 C ratios of the carbonates is most likely due to the mixing of metamorphic and meteoric fluids. The delta 34 S values of sulfides indicate a direct crustal origin for the sulfur. It is suggested that the sulfur is largely derived from pre-existing sulfide bodies and has been transported by metamorphic fluids. The willemitic ore may have originated from the precipitation of metal in sulfur-poor fluids under oxidized conditions, within the Vazante shear zone.
The Vazante Mine is located in the Vazante District, the largest zinc district in Brazil. The Vazante deposit consists dominantly of an unusual willemitic ore. Small sulfide bodies are tectonically imbricated with the willemitic ore, within the Vazante shear zone. Structural styles of deformation and petrographic and isotopic evidence indicate that willemitic mineralization and deformation occurred synchronously during the Neo-Proterozoic. Various generations of hydrothermal veins and hydraulic breccias may pre-date, accompany and overprint the mineralization. Ore-formation temperatures are deduced from stable isotope geothermometry and mineral chemistry of both sulfide bodies and willemitic ore. Temperatures during the main stage of mineralization range from 206 degrees C to 294 degrees C (willemitic ore) and 317 degrees C (sulfides), and reflect the prevailing metamorphic conditions within the shear zone. The fluid from which the gangue minerals of the sulfide bodies precipitated (at 250 degrees C) had an oxygen isotopic average value of delta 18 O = +19.4 per mil. This value appears to reflect the interaction of metamorphic fluid with the carbonate rocks of the Vazante formation. At 250 degrees C, the fluid in equilibrium with the vein mineral phases and willemitic ore assemblage exhibits a uniform oxygen isotopic composition, with an average value of delta 18 O = +11.5 per mil. The positive linear covariance of delta 18 O and delta 13 C ratios of the carbonates is most likely due to the mixing of metamorphic and meteoric fluids. The delta 34 S values of sulfides indicate a direct crustal origin for the sulfur. It is suggested that the sulfur is largely derived from pre-existing sulfide bodies and has been transported by metamorphic fluids. The willemitic ore may have originated from the precipitation of metal in sulfur-poor fluids under oxidized conditions, within the Vazante shear zone.
Keywords: hydrothermal karst, hypogene speleogenesis, zinc ore, vazante, zinc mine, minas gerais, brazil