KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Fems Microbiology Reviews, 1997, Vol 20, Issue 0, p. 461-472
Microorganisms as tracers in groundwater injection and recovery experiments: a review
Harvey R. W. ,
Abstract:
Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured-rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e.g., 10(13) phage ml(-1)) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g. by stable isotope labeling or inserting genetic markers, such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course
Modern day injection and recovery techniques designed to examine the transport behavior of microorganisms in groundwater have evolved from experiments conducted in the late 1800s, in which bacteria that form red or yellow pigments were used to trace flow paths through karst and fractured-rock aquifers. A number of subsequent groundwater hydrology studies employed bacteriophage that can be injected into aquifers at very high concentrations (e.g., 10(13) phage ml(-1)) and monitored through many log units of dilution to follow groundwater flow paths for great distances, particularly in karst terrain. Starting in the 1930s, microbial indicators of fecal contamination (particularly coliform bacteria and their coliphages) were employed as tracers to determine potential migration of pathogens in groundwater. Several injection and recovery experiments performed in the 1990s employed indigenous groundwater microorganisms (both cultured and uncultured) that are better able to survive under in situ conditions. Better methods for labeling native bacteria (e.g. by stable isotope labeling or inserting genetic markers, such as the ability to cause ice nucleation) are being developed that will not compromise the organisms' viability during the experimental time course
Keywords: aquifer, aquifers, bacteria, behavior, contamination, dilution, distance, fecal contamination, flow, form, fractured rock aquifers, genetic markers, genetic-markers, groundwater, groundwater flow, groundwater hydrology, groundwater-flow, human enteric viruses, hydrology, ice, in-situ, indicator, indicators, infiltration, isotope, karst, karst terrain, log, marine, markers, microorganism, microorganisms, microspheres, migration, movement, number, pathogens, pigment, pigments, recharge, recovery, review, sandy aquifer, sediments, soil, stable isotope, stable isotope labeling, stable-isotope, subsurface, terrain, time, times, tracer, tracers, transport, units,