Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That marine relict is an animal whose presently extinct ancestors lived in salt water but became adapted to life in fresh water when an area formerly covered by the sea became dry land [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Geological Society, London, Special Publications, 1998, Vol 140, Issue 1, p. 155-176
Mapping Chicxulub crater structure with gravity and seismic reflection data
Abstract:
Aside from its significance in establishing the impact-mass extinction paradigm, the Chicxulub crater will probably come to exemplify the structure of large complex craters. Much of Chicxulub's structure may be mapped' by tying its gravity expression to seismic-reflection profiles revealing an [~]180 km diameter for the now-buried crater. The distribution of karst topography aids in outlining the peripheral crater structure as also revealed by the horizontal gradient of the gravity anomaly. The fracturing inferred to control groundwater flow is apparently related to subsidence of the crater fill. Modelling the crater's gravity expression based on a schematic structural model reveals that the crater fill is also responsible for the majority of the negative anomaly. The crater's melt sheet and central structural uplift are the other significant contributors to its gravity expression. The Chicxulub impact released [~]1.2 x 1031 ergs based on the observed collapsed disruption cavity of [~]86 km diameter reconstructed to an apparent disruption cavity (Dad) of [~]94 km diameter (equivalent to the excavation cavity) and an apparent transient cavity (Dat) of [~]80 km diameter. This impact energy, together with the observed [~]2 x 1011 g global Ir fluence in the Cretaceous-Tertiary (K-T) fireball layer indicates that the impactor was a comet estimated as massing [~]1.8 x 1018 g of [~]16.5 km diameter assuming a 0.6 gcm-3 density. Dust-induced darkness and cold, wind, giant waves, thermal pulses from the impact fireball and re-entering ejecta, acid rain, ozone-layer depletion, cooling from stratospheric aerosols, H2O greenhouse, CO2 greenhouse, poisons and mutagens, and oscillatory climate have been proposed as deleterious environmental effects of the Chicxulub impact with durations ranging from a few minutes to a million years. This succession of effects defines a temperature curve that is characteristic of large impacts. Although some patterns may be recognized in the K-T extinctions, and the survivorship rules changed across the boundary, relating specific environmental effects to species' extinctions is not yet possible. Geochemical records across the boundary support the occurrence a prompt thermal pulse, acid rain and a [~]5000 year-long greenhouse. The period of extinctions seems to extend into the earliest Tertiary