Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That dead water is standing, stagnant water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

175 FIFTH AVE, NEW YORK, NY 10010 USA
International Journal of Earth Sciences, 2001, Vol 90, Issue 3, p. 500-518
The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps - a mosaic stone in the geomorphological evolution of the Eastern Alps
Abstract:
The central and eastern areas of the Northern Calcareous Alps (NCA) are characterized by remnants of the Dachstein paleosurface, which formed in Late Eocene (?) to Early Oligocene time and is preserved with limited modification on elevated karst plateaus. In Oligocene time, the Dachstein paleosurface subsided and was sealed by the Augenstein Formation, a terrestrial succession of conglomerates and sandstones, which are only preserved in small remnants on the plateaus, some in an autochthonous position. Thermochronological data suggest a maximum thickness of the Augenstein Formation of >1.3 km, possibly >2 km. The age of the Augenstein Formation is constrained by the overall geological situation as Early Oligocene to earliest Miocene. Fission track age data support an Early Oligocene age of the basal parts of the formation. The source area of the Augenstein Formation consisted predominantly of weakly metamorphic Paleozoic terrains (Greywacke Zone and equivalents) as well as the Late Carboniferous to Scythian siliciclastic base of the NCA to the south of the depositional area. To the west, the Augenstein Formation interfingered with the Tertiary deposits of the Inntal. Sedimentation of the Augenstein Formation was terminated in Early Miocene time in the course of the orogenic collapse of the Eastern Alps. The Augenstein sediments were eroded and redeposited in the foreland Molasse zone. From Pannonian times (similar to 10 Ma) on, the NCA and the denuded Dachstein surface experienced uplift in several pulses. The Dachstein paleosurface has been preserved in areas, in which thick limestone sequences allowed subsurface erosion by cave formation and thus prevented major surface erosion