KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Charles Town, West Virginia (USA)
Karst Modeling: Karst Waters Institute Special Publication 5, 1999, p. 17-29
Perspectives in karst hydrogeology and cavern genesis
Ford D. C.
Abstract:
Hydrogeology and speleology both began during the 19th CenturyTheir approaches to limestone aquifers diverged because hydrogeologists tend to measure phenomena at very local scales between drilled wells and generalize from them to basin scales, while speleologists study the large but sparse conduits and then infer conditions around themConvergence of the two approaches with modem computing should yield important genetic models of aquifer and caveGenesis of common cave systems by dissolution is a three-dimensional problem, best broken down into two-dimensional pairs for purposes of analysisHistorically, the dimensions of length and depth have received most attention, especially the question of the location of principal cave genesis with respect to the water tableBetween 1900 and 1950, different scientists proposed that caves develop principally (1) in the vadose zone; (2) at random depth in the phreatic zone; (3) along the water table in betweenEmpirical evidence suggests that these differing hypotheses can be reconciled by a four-state model in which the frequency of penetrable fissuration controls the system geometryFor the dimensions of length and breadth (plan patterns) there is widespread agreement that dendritic (or branchwork) patterns predominate in common cavesIrregular networks or anastomose patterns may occur as subsidiary componentsWhen hydraulic conditions in a fissure are anisotropic (the usual case), dissolutional conduit development is competitive: local hydraulic gradients are reoriented toward the first conduits to break through to outlet points, redirecting others toward them in a cascading processPlan patterns are most complex where there have been multiple phases ("levels") of development in a cave system in response to such effects as river channel entrenchment lowering the elevation of springs
Hydrogeology and speleology both began during the 19th CenturyTheir approaches to limestone aquifers diverged because hydrogeologists tend to measure phenomena at very local scales between drilled wells and generalize from them to basin scales, while speleologists study the large but sparse conduits and then infer conditions around themConvergence of the two approaches with modem computing should yield important genetic models of aquifer and caveGenesis of common cave systems by dissolution is a three-dimensional problem, best broken down into two-dimensional pairs for purposes of analysisHistorically, the dimensions of length and depth have received most attention, especially the question of the location of principal cave genesis with respect to the water tableBetween 1900 and 1950, different scientists proposed that caves develop principally (1) in the vadose zone; (2) at random depth in the phreatic zone; (3) along the water table in betweenEmpirical evidence suggests that these differing hypotheses can be reconciled by a four-state model in which the frequency of penetrable fissuration controls the system geometryFor the dimensions of length and breadth (plan patterns) there is widespread agreement that dendritic (or branchwork) patterns predominate in common cavesIrregular networks or anastomose patterns may occur as subsidiary componentsWhen hydraulic conditions in a fissure are anisotropic (the usual case), dissolutional conduit development is competitive: local hydraulic gradients are reoriented toward the first conduits to break through to outlet points, redirecting others toward them in a cascading processPlan patterns are most complex where there have been multiple phases ("levels") of development in a cave system in response to such effects as river channel entrenchment lowering the elevation of springs