Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hypogeum is the subterranean environment [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Featured article from geoscience journal

Geomorphology, 2010, Vol 119, Issue 1, p. 23-35
Volcanogenic origin of cenotes near Mt Gambier, southeastern Australia
Abstract:

The cenotes near Mt Gambier are circular, cliffed, collapse dolines containing water-table lakes up to 125 m deep, floored by large rubble cones. They lie in a flat, coastal plain composed of mid-Tertiary limestone. Most of the deepest cenotes are concentrated in two small areas located along trends sub-parallel to the main joint direction in the limestone. The cenotes do not connect to underwater phreatic passages, and water chemistry data confirm that they are not part of an interconnected karst network. They formed by collapse into large chambers (up to > 1 million m3) that extended 125 m or more below the land surface. Several cenotes have actively growing stromatolites on the sub-vertical walls that started growing at 8000 years BP.

The caves that collapsed to form the deep Mt Gambier cenotes are much larger than shallow and deep phreatic caves in the area, and do not connect into deep phreatic systems. They were not formed by freshwater/seawater mixing, responsible for many of the well-known Yucatan cenotes, because they are not associated with locations of the mixing zone during previous high sea levels, and are much larger than caves presently forming along the mixing zone near Mt Gambier. Instead dissolution was most likely due to a process whereby acidified groundwater containing large amounts of volcanogenic CO2 ascended up fractures from the magma chambers that fed the Pleistocene–Holocene volcanic eruptions in the area; deep reservoirs of volcanogenic CO2 occur nearby.

Cave dissolution could have been due to release of CO2 during the Mt Gambier eruption 28,000 years ago, followed by collapse to form cenotes during the low sea levels of the Last Glacial Maximum 20,000 years ago. The cenotes then flooded 8000 years ago as sea level rose, and stromatolites began to grow on the walls.