Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That kunker is see caliche.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for archean (Keyword) returned 10 results for the whole karstbase:
A tentative classification of paleoweathering formations based on geomorphological criteria, 1996, Battiauqueney Y,
A geomorphological classification is proposed that emphasizes the usefulness of paleoweathering records in any reconstruction of past landscapes. Four main paleoweathering records are recognized: 1. Paleoweathering formations buried beneath a sedimentary or volcanic cover. Most of them are saprolites, sometimes with preserved overlying soils. Ages range from Archean to late Cenozoic times; 2. Paleoweathering formations trapped in karst: some of them have buried pre-existent karst landforms, others have developed simultaneously with the subjacent karst; 3. Relict paleoweathering formations: although inherited, they belong to the present landscape. Some of them are indurated (duricrusts, silcretes, ferricretes,...); others are not and owe their preservation to a stable morphotectonic environment; 4. Polyphased weathering mantles: weathering has taken place in changing geochemical conditions. After examples of each type are provided, the paper considers the relations between chemical weathering and landform development. The climatic significance of paleoweathering formations is discussed. Some remote morphogenic systems have no present equivalent. It is doubtful that chemical weathering alone might lead to widespread planation surfaces. Moreover, classical theories based on sea-level and rivers as the main factors of erosion are not really adequate to explain the observed landscapes

Geomorphological evidence for anti-Apennine faults in the Umbro-Marchean Apennines and in the peri-Adriatic basin, Italy, 1996, Coltorti M, Farabollini P, Gentili B, Pambianchi G,
The Apennines are a relatively recent mountain chain which has been affected by uplift movements since the Upper Pliocene. In fact the remnants of an “erosional surface”, reduced close to base level, is preserved at the top of the relief. There is no general agreement on the geodynamic stress field and mechanisms which are creating the chain. However, it is largely accepted that uplift occurred together with the activation, on the western side of the chain, of extensive faults, oriented in the Apennine direction (NW-SE), which have been linked to the opening of the Tyrrhenian sea. A great debate is going on about the presence and significance of anti-Apennine faults (NE-SW) which have been observed by some authors but completely denied by others.The main evidence is represented by[ (1) block faulting of the remnants of the “erosional surface”. Along the Marchean Ridge, more elevated relief, delimiting relatively depressed areas, was created in correspondence with the Sibillini Mts. and Mt. S. Vicino. Similar evidence has been found in the Umbro-Marchean Ridge. Locally more than 1500 metres of displacement have been observed between more and less uplifted remnants. (2) Block faulting of fan deltas and related beaches, of Sicilian to Crotonian age, with more elevated sediments preserved between the Tronto and Tenna rivers and between the Musone and Esino rivers. Maximum displacement along a transect parallel to the coast is 200 metres. (3) fault-scarps affecting the Middle Pleistocene river terraces, as observed along the Esino, the Tronto, the Chienti and the Tenna river valleys. Maximum displacements are in the order of 50 metres. (4) Faulting of horizontal karst galleries and reorientation of the cave network, as in the Frasassi Gorge. Maximum displacements are about 100 metres. (5) Captures and alignments in the drainage network of the main river courses. (6) Large-scale gravitational movements, as in the Ancona landslide, and along the Chienti and Esino rivers.Their activation occurred in most cases after the Lower Pleistocene and although their displacements may be of relatively limited extent, dispite their recent activity, they played a major role in the modelling of the landscape. These faults display transtensive, extensional and trascurrent movements. Apart from the controversial geodynamic significance of these faults, from a geomorphological point of view they must be considered transverse elements of the stress field from blocks more or less uplifted along the Apennine chain.The importance and timing of activity of these faults in the Quaternary geomorphological evolution of the Umbria-Marchean Apennines is demonstrated using evidence usually underestimated by structural geologists, which can contribute to a debate based on a multidisciplinary approach

Blue Lagon, Afrique du Sud, une grotte remplissage palokarstique permien et concrtions daragonite, 1998, Martini J. E. J. , Moen H. F. G.
The authors de scribe a 7 km long phreatic maze they discovered and explored during the last decade of the 2Oth century in South Africa, developed in the late Archean dolostone in the Malmani Subgroup. This cave is of interest mainly for two aspects. Firstly the cave intersects paleokarst channels filled with bleached kaolinic residuals of Permian age. This paleokarst is most likely to have developed relatively shortly after the Gondwana glaciation in a cool, humid climate. Secondly the cave is remarkable by the abundance of aragonite speleothems. Particularly interesting are subaquatic aragonite formations: rafts, cones, volcanoes, sea urchins and pool floor crust. Aragonite rafts are always associated with more or less calcite, which seems to have formed first and was apparently essential in the initial formation of this speleothem. In the pool floor crust, a cyclical calcite-aragonite deposition seems to correspond to alternation of humid and dry periods, calcite representing wet years. The amplitude of this cycle is possibly in the order of a few decades. Phosphate minerals which developed on cave soil, rock and carbonate speleothems in contact with bat guano, have been identified, in particular the rare mineral collinsite

An overview of the geology of the Transvaal Supergroup dolomites (South Africa), 1998, Eriksson Pg, Altermann W,
In the Neoarchaean intracratonic basin of the Kaapvaal craton, between approximately 2640 Ma and 2516 Ma, two successive stromatolitic carbonate platforms developed. Deposition started with the Schmidtsdrif Subgroup, which is probably oldest in the southwestern part of the basin, and which contains stromatolitic carbonates, siliciclastic sediments and minor lava flows. Subsequently, the Nauga formation carbonates were deposited on peritidal flats located to the southwest and were drowned during a transgression of the Transvaal Supergroup epeiric sea, around 2550 Ma ago. This transgression led to the development of a carbonate platform in the areas of the preserved Transvaal and Griqualand West basins, which persisted for 30-50 Ma. During this time, shales were deposited over the Nauga Formation carbonates in the south-western portion of the epeiric sea. S subsequent period of basin subsidence led to drowning of the stromatolitic platform and to sedimentation of chemical, iron-rich silica precipitates of the banded iron formations (BIF) over the entire basin. Carbonate precipitation in the Archaean was largely due to chemical and lesser biogenic processes, with stromatolites and ocean water composition playing an important role. The stromatolitic carbonates in the preserved Griqualand West and Transvaal basins are subdivided into several formations, based on the depositional facies, reflected by stromatolite morphology, and on a intraformational unconformities; interbedded tuffs and available radiometric age data do not ye permit detailed correlation of units from the two basins. Thorough dolomitisation of most formations took place at different post-depositional stages, but mainly during early diagenesis. Partial silification was the result of diagenetic and weathering processes. Karstification of the carbonate rocks was related to periods of exposure to subaerial conditions and to percolation of groundwater. Such periods occurred locally at the time of carbonate and BIF deposition. Main karstification, however, probably took place during an erosional period between approximately 2430 Ma and 2320 Ma

Growth and demise of an Archean carbonate platform, Steep Rock Lake, Ontario, Canada, 1999, Kusky T. P. , Hudleston P. J. ,
The Steep Rock Group of northwest Ontario's Wabigoon subprovince is one of the world's thickest Archean carbonate platform successions. It was deposited unconformably over a 3001-2928 Ma gneissic terrane, and contains a remarkable group of biogenic and oolitic limestones, dolostones, micrites, and karat breccias capped by a thick paleosol developed between and over karst towers. The presence of aragonite fans, herringbone calcite, and rare gypsum molds suggests that the carbonate platform experienced at least local anaerobic and hypersaline depositional conditions. This sequence shows that a combination of chemical and biological processes was able to build a carbonate platform 500 m thick by 3 billion years ago. The carbonate platform is structurally overlain by a mixture of complexly deformed rocks of the Dismal Ashrock forming a melange with blocks of ultramafic volcaniclastic rocks, mafic volcanics, carbonate, tonalite, lenses of Fe-ore rock, and metasedimentary rocks, in a shaly, serpentinitic, and fragmental ultramafic volcaniclastic matrix. The melange shows evidence of polyphase deformation, with early high-strain fabrics formed at amphibolite facies, and later superimposed brittle fabrics related to the final emplacement of the melange over the carbonate platform. An amphibolite- through greenschist-grade shear zone marks the upper contact of the melange with overlying mafic volcanic and tuffaceous rocks of the ca. 2932 Ma Witch Bay allochthon, interpreted as a primitive island are sequence. We suggest an evolutionary model for the area that begins with rifting of an are sequence (Marmion Complex of the Wabigoon are) that initiated subsidence and sedimentation on the Steep Rock platform and its correlatives that extend for a restored strike length exceeding 1000 km. Shallow water carbonate sedimentation continued until the platform was uplifted on the flanks of a flexural bulge related to the approach of the Witch Bay allochthon, representing collision of the rifted are margin of the Wabigoon subprovince with the Witch Bay are. Melange of the Dismal Ashrock was formed as off-axis volcanic rocks were accreted to the base of the Witch Bay allochthon prior to its collision with the Steep Rock platform

Late Archaean foreland basin deposits, Belingwe greenstone belt, Zimbabwe, 2001, Hofmann A. , Dirks P. H. G. M. , Jelsma H. A. ,
The c. 2.65 Ga old sedimentary Cheshire Formation of the Belingwe greenstone belt (BDB), central Zimbabwe, has been studied in detail for the first time to shed some light on the much debated evolution of this classical belt. The Cheshire Formation rests sharply on a mafic volcanic unit (Zeederbergs Formation) and comprises a basal, eastward-sloping carbonate ramp sequence built of shallowing-upward, metre-scale sedimentary cycles. The cycles strongly resemble Proterozoic and Phanerozoic carbonate cycles and might have formed by small-scale eustatic sea level changes. The top of the carbonate ramp is represented by a karst surface. The carbonates are overlain by and grade laterally to the east into deeper water (sub-wave base) siliciclastic facies. Conglomerate, shale and minor sandstone were deposited by high- to low-density turbidity currents and were derived from the erosion of Zeederbergs-like volcanic rocks from the east. Shortly after deposition, the Cheshire Formation and underlying volcanics were affected by a northwest-directed thrusting event. Thrusting gave rise to the deformation of semi-consolidated sediments and resulted in the juxtaposition of a thrust slice of Zeederbergs basalts onto Cheshire sediments. The stratigraphy, asymmetric facies and sediment thickness distribution, palaeogeographic constraints and evidence for an early horizontal tectonic event suggest that the Cheshire Formation formed in a foreland-type sedimentary basin. (C) 2001 Elsevier Science B.V. All rights reserved

Karst processes from the beginning to the end: How can they be dated?, 2003, Bosk, B

Determining the beginning and the end of the life of a karst system is a substantial problem. In contrast to most of living systems development of a karst system can be „frozen“ and then rejuvenated several times (polycyclic and polygenetic nature). The principal problems may include precise definition of the beginning of karstification (e.g. inception in speleogenesis) and the manner of preservation of the products of karstification. Karst evolution is particularly dependent upon the time available for process evolution and on the geographical and geological conditions of the exposure of the rock. The longer the time, the higher the hydraulic gradient
and the larger the amount of solvent water entering the karst system, the more evolved is the karst. In general, stratigraphic discontinuities, i.e. intervals of nondeposition (disconformities and unconformities), directly influence the intensity and extent of karstification. The higher the order of discontinuity under study, the greater will be the problems of dating processes and events. The order of unconformities influences the stratigraphy of the karst through the amount of time available for subaerial processes to operate. The end of karstification can also be viewed from various perspectives. The final end occurs at the moment when the host
rock together with its karst phenomena is completely eroded/denuded. In such cases, nothing remains to be dated. Karst forms of individual evolution stages (cycles) can also be destroyed by erosion, denudation and abrasion without the necessity of the destruction of the whole sequence of karst rocks. Temporary and/or final interruption of the karstification process can be caused by the fossilisation of karst due to loss of its hydrological function. Such fossilisation can be caused by metamorphism, mineralisation,
marine transgressions, burial by continental deposits or volcanic products, tectonic movements, climatic change etc. Known karst records for the 1st and 2nd orders of stratigraphic discontinuity cover only from 5 to 60 % of geological time. The shorter the time available for karstification, the greater is the likelihood that karst phenomena will be preserved in the stratigraphic record. While products of short-lived karstification on shallow carbonate platforms can be preserved by deposition during the immediately succeeding sea-level rise, products of more pronounced karstification can be destroyed by a number of different geomorphic
processes. The longer the duration of subaerial exposure, the more complex are those geomorphic agents.
Owing to the fact that unmetamorphosed or only slightly metamorphosed karst rocks containing karst and caves have occurred since Archean, we can apply a wide range of geochronologic methods. Most established dating methods can be utilised for direct and/or indirect dating of karst and paleokarst. The karst/paleokarst fills are very varied in composition, including a wide range of clastic and chemogenic sediments, products of surface and subsurface volcanism (lava, volcaniclastic materials, tephra), and deepseated
processes (hydrothermal activity, etc). Stages of evolution can also be based on dating correlated sediments that do not fill karst voids directly. The application of individual dating methods depends on their time ranges: the older the subject of study, the more limited is the choice of method. Karst and cave fills are relatively special kinds of geologic materials. The karst environment favours both the preservation of paleontological remains and their destruction. On one hand, karst is well known for its richness of paleontological sites, on the other hand most cave fills are complete sterile, which is true especially for the inner-cave facies. Another
problematic feature of karst records is the reactivation of processes, which can degrade a record by mixing karst fills of different ages.


The Geomicrobiology of Ore Deposits, 2005, Southam G. , Saunders James A. ,
Bacterial metabolism, involving redox reactions with carbon, sulfur, and metals, appears to have been important since the dawn of life on Earth. In the Archean, anaerobic bacteria thrived before the Proterozoic oxidation of the atmosphere and the oceans, and these organisms continue to prosper in niches removed from molecular oxygen. Both aerobes and anaerobes have profound effects on the geochemistry of dissolved metals and metal-bearing minerals. Aerobes can oxidize dissolved metals and reduced sulfur, as well as sulfur and metals in sulfide minerals can contribute to the supergene enrichment of sulfide ores, and can catalyze the formation of acid mine drainage. Heterotrophic anaerobes, which require organic carbon for their metabolism, catalyze a number of thermodynamically favorable reactions such as Fe-Mn oxyhydroxide reductive dissolution (and the release of sorbed metals to solution) and sulfate reduction. Bacterial sulfate reduction to H2S can be very rapid if reactive organic carbon is present and can lead to precipitation of metal sulfides and perhaps increase the solubility of elements such as silver, gold, and arsenic that form stable Me-H2S aqueous complexes. Similarly, the bacterial degradation of complex organic compounds such as cellulose and hemicellulose to simpler molecules, such as acetate, oxalate, and citrate, can enhance metal solubility by forming Me organic complexes and cause dissolution of silicate minerals. Bacterially induced mineralization is being used for the bioremediation of metal-contaminated environments. Through similar processes, bacteria may have been important contributors in some sedimentary ore-forming environments and could be important along the low-temperature edges of high-temperature systems such as those that form volcanogenic massive sulfides

Sedimentary manganese metallogenesis in response to the evolution of the Earth system, 2006, Roy Supriya,
The concentration of manganese in solution and its precipitation in inorganic systems are primarily redox-controlled, guided by several Earth processes most of which were tectonically induced. The Early Archean atmosphere-hydrosphere system was extremely O2-deficient. Thus, the very high mantle heat flux producing superplumes, severe outgassing and high-temperature hydrothermal activity introduced substantial Mn2 in anoxic oceans but prevented its precipitation. During the Late Archean, centered at ca. 2.75[no-break space]Ga, the introduction of Photosystem II and decrease of the oxygen sinks led to a limited buildup of surface O2-content locally, initiating modest deposition of manganese in shallow basin-margin oxygenated niches (e.g., deposits in India and Brazil). Rapid burial of organic matter, decline of reduced gases from a progressively oxygenated mantle and a net increase in photosynthetic oxygen marked the Archean-Proterozoic transition. Concurrently, a massive drawdown of atmospheric CO2 owing to increased weathering rates on the tectonically expanded freeboard of the assembled supercontinents caused Paleoproterozoic glaciations (2.45-2.22[no-break space]Ga). The spectacular sedimentary manganese deposits (at ca. 2.4[no-break space]Ga) of Transvaal Supergroup, South Africa, were formed by oxidation of hydrothermally derived Mn2 transferred from a stratified ocean to the continental shelf by transgression. Episodes of increased burial rate of organic matter during ca. 2.4 and 2.06[no-break space]Ga are correlatable to ocean stratification and further rise of oxygen in the atmosphere. Black shale-hosted Mn carbonate deposits in the Birimian sequence (ca. 2.3-2.0[no-break space]Ga), West Africa, its equivalents in South America and those in the Francevillian sequence (ca. 2.2-2.1[no-break space]Ga), Gabon are correlatable to this period. Tectonically forced doming-up, attenuation and substantial increase in freeboard areas prompted increased silicate weathering and atmospheric CO2 drawdown causing glaciation on the Neoproterozoic Rodinia supercontinent. Tectonic rifting and mantle outgassing led to deglaciation. Dissolved Mn2 and Fe2 concentrated earlier in highly saline stagnant seawater below the ice cover were exported to shallow shelves by transgression during deglaciation. During the Sturtian glacial-interglacial event (ca. 750-700[no-break space]Ma), interstratified Mn oxide and BIF deposits of Damara sequence, Namibia, was formed. The Varangian ([identical to] Marinoan; ca. 600[no-break space]Ma) cryogenic event produced Mn oxide and BIF deposits at Urucum, Jacadigo Group, Brazil. The Datangpo interglacial sequence, South China (Liantuo-Nantuo [identical to] Varangian event) contains black shale-hosted Mn carbonate deposits. The Early Paleozoic witnessed several glacioeustatic sea level changes producing small Mn carbonate deposits of Tiantaishan (Early Cambrian) and Taojiang (Mid-Ordovician) in black shale sequences, China, and the major Mn oxide-carbonate deposits of Karadzhal-type, Central Kazakhstan (Late Devonian). The Mesozoic period of intense plate movements and volcanism produced greenhouse climate and stratified oceans. During the Early Jurassic OAE, organic-rich sediments host many Mn carbonate deposits in Europe (e.g., Urkut, Hungary) in black shale sequences. The Late Jurassic giant Mn Carbonate deposit at Molango, Mexico, was also genetically related to sea level change. Mn carbonates were always derived from Mn oxyhydroxides during early diagenesis. Large Mn oxide deposits of Cretaceous age at Groote Eylandt, Australia and Imini-Tasdremt, Morocco, were also formed during transgression-regression in greenhouse climate. The Early Oligocene giant Mn oxide-carbonate deposit of Chiatura (Georgia) and Nikopol (Ukraine) were developed in a similar situation. Thereafter, manganese sedimentation was entirely shifted to the deep seafloor and since ca. 15[no-break space]Ma B.P. was climatically controlled (glaciation-deglaciation) assisted by oxygenated polar bottom currents (AABW, NADW). The changes in climate and the sea level were mainly tectonically forced

The Genesis of the Hope Downs Iron Ore Deposit, Hamersley Province, Western Australia, 2006, Lascelles Desmond F. ,
The banded iron formation (BIF)-hosted Hope Downs high-grade hematite ore deposits are situated within the Marra Mamba Iron Formation with subsidiary deposits in the Brockman Iron Formation of the Archean to Proterozoic Hamersley Group of Western Australia. The main orebody extends to 260 m below the surface and is unusually rich in martite (pseudomorphous hematite after magnetite) and poor in limonite and goethite compared to other ore deposits of the Marra Mamba Iron Formation. The high-grade hematite ore is mainly within the Newman Member but also occurs in parts of the Nammuldi Member together with low-grade limonitic ore that becomes high grade after calcining. Karst erosion of the overlying Wittenoom Formation has produced steep-sided buried valleys adjacent to the in situ orebodies that contain thick deposits (<160 m) of goethitic and sideritic sediments, including remnants of Robe Pisolite Formation, bedded siderite, hematite gravels, red ochreous detrital material, and enriched scree deposits that are additional sources of ore. The ore consists of low phosphorous martite-limonite-goethite derived from chert-free BIF by supergene weathering. No evidence of the complete carbonate replacement of chert has been found at Hope Downs nor were any traces of preexisting chert bands seen in the ore, despite the abundance of chert bands in BIF elsewhere. A variety of textures and composition shown by cherty BIF adjacent to the orebodies is described from which the origin of the chert-free BIF is inferred, including sedimentary structures consistent with density-current deposition. A model is presented for the origin of the host iron formation and the ore deposits, in which density currents transported reworked iron silicates and hydroxides in colloidal suspension onto an unstable sea floor. The amorphous silica produced during diagenesis of Al-poor iron silicates formed the characteristic chert bands of BIF but some of the hydrous amorphous silica was lost prior to lithification to form chert-free BIF. Weathering of the chert-free BIF produced the high-grade hematite ore that is exposed today

Results 1 to 10 of 10
You probably didn't submit anything to search for