Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aquifer system is a body of permeable and poorly permeable material that functions regionally as a water-yielding unit; it comprises two or more permeable beds separated at least locally by confining beds that impede ground-water movement but do not greatly affect the regional hydraulic continuity of the system; includes both saturated and unsaturated parts of permeable material [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for areas (Keyword) returned 825 results for the whole karstbase:
Showing 1 to 15 of 825
Origin of the sedimentary deposits of the Naracoorte Caves, South Australia, , Forbes Ms, Bestland Ea,
The origin of the sediments located in the Naracoorte Caves (South Australia) was investigated via the analysis of strontium isotope ratios (87Sr/86Sr), elemental geochemistry, and mineralogy. Sedimentary deposits located in Robertson, Wet, Blanche and several other chambers in Victoria Cave are all variable mixes of fine sand and coarse silts, which display similar and consistent strontium isotope ratios (0.717-0.725). This suggests that over the 400[no-break space]ka time frame that these deposits span there has been minimal variation in the source of the clastic sediments. Increased strontium concentrations for these cave sediments correspond with increasing silt content, yet there is no correlation between 87Sr/86Sr ratios and silt content. This implies that the silt-sized component of the sediments is the main contributor of strontium to the cave sediments. Comparisons of 87Sr/86Sr with regional surficial deposits show a significant correlation between the cave sediments (avg: 0.7228; n = 27), the fine silt lunettes of the Bool Lagoon area (avg: 0.7224; n = 4), the sandy A horizons of the Coonawarra Red Brown Earths (RBEs; avg: 0.726; n = 5), and Holocene age podsolic sand deposits (0.723). These data suggest that there has been substantial flux from this group of deposits to the caves, as would be expected considering prevailing winds. This relationship is further supported by a strong correlation between many trace elements, including Ti, Zr, Ce, and Y; however, variations in clay mineralogy suggest that the fine silt-dominated lunettes and Padthaway RBEs were not significant contributors to the cave deposits. Hence, the detritus entering the caves was more than likely from areas proximal to the cave entrance and was dominated by medium grain-sized materials. Major regional deposits, including the coarser-grained, calcite-rich Bridgewater Formation sands, basalts from the lower SE, Padthaway Horst granites, Gambier limestone, and metamorphics from the Adelaide geosyncline show minimal correlation in 87Sr/86Sr ratios, elemental geochemistry, and mineralogy with the cave sediments, and are discounted as significant sources. In comparison, 87Sr/86Sr ratios for the Coorong silty sands (0.717-0.724), Lower Murray sands (0.727-0.730), and the medium size silt component of the Murray-Darling River system (0.71-0.72), compare favourably with the cave sediments. This relationship is further supported by similarities in elemental chemistry and mineralogy. Thus, much of the strontium-rich silt that is now located in the Naracoorte Cave sediments likely originated from the Murray-Darling basin. Over time, this material has been transported to the SE of South Australia, where it mixed with the medium sand component of the regressive dune ridge sequence, locally derived organic matter, limestone fragments, and fossil material to produce the unique deposits that we see evident in many of the chambers of the Naracoorte Cave system today

Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence, , Yankohombach Valentina, Gilbert Allan S. , Dolukhanov Pavel,
Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]

Recharge of Phreatic Aquifers in (Semi-)Arid Areas, ,
Groundwater use is of fundamental importance to meet the rapidly expanding urban, industrial and agricultural water requirements in (semi) arid areas. Quantifying the current rate of groundwater recharge and define its variability in space and time are thus prerequesites for efficient groundwater resource managment in these regions, where such resources are often the key to economic development. Attention focuses on recharge of phreatic aquifers, often the most readily-available and affordable source of water in (semi) arid regions. These aquifers are also the most susceptible to contamination, with the recharge rate determining their level of vulnerability. (Semi) arid zone recharge can be highly variable, the greater the aridity, the smaller and potentially more variable the natural flux. Its determination is an iterative process, involving progressive data collection and resource evaluation; there is also a need to use more than one technique to verify results. Direct, localised and indirect recharge mechanisms from a spectrum of known sources are addressed in the framework of recharge from precipitation, intermittant flow and permanent water bodies. The approach taken for each of these reflects the nature and current understanding of the processes involved. The volume also reviews current recharge estimation challenges, outlines recent developments and offers guidance for potential solutions.

Transport and variability of fecal bacteria in carbonate conglomerate aquifers, , Goeppert N. , Goldscheider N.

Clastic sedimentary rocks are generally considered non-karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst-like characteristics, flow behavior and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi-tracer tests with fluorescent dyes and bacteria-sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (i) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (ii) microbial contaminants are rapidly transported towards springs; and (iii) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different ground water protection strategies than currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability.


Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjšek spring, Slovenia, , Ravbar, N. , Engelhardt, I. , Goldscheider, N.

Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high-flow events in an 18-month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high-flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite-difference model including high-conductivity cells representing the conduit network (“discrete-continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high-flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions.

Some Notes on the Principle Cave Areas in Tasmania, 1956, Brown F. R.

Bermuda--A partially drowned, late mature, Pleistocene karst, 1960, Bretz Jh,
During Pleistocene time, the Bermuda Islands repeatedly underwent partial inundation and re-emergence. The land areas were continuously attacked and reduced by rain and ground water but repeatedly renewed, during times of submergence, by deposition of marine limestone and by contemporaneous additions of shore-born and wind-transported carbonate sand, now eolianite. Soils formed under subaerial conditions are now buried beneath later deposits and constitute important stratigraphic markers. The igneous foundation rock appears to have been exposed during some low marine stands, and the former shorelines seem to be recorded by submerged terraces. The major karst features are largely below sea level, and they must date from times of continental glaciations. Previous writers have assigned eolian accumulation to times of Pleistocene low sea level and soil-making to times of interglacial high sea. Both conclusions are held to be erroneous

Observations on Caves, Particularly Those Of South Australia - 1862 , 1962, Lane, Edward A.

The historical study of Australian caves and caving areas is fascinating although involving the expenditure of vast amounts of time. Australia's early days are unusually well-documented, but in the case of caves the early history is usually wrapped up in rumour, hearsay and clouded by lack of written record. Most research work means long hours poring over old newspaper files, mine reports, land department records and so on, little of which is catalogued. A small number of exploration journals and scientific studies have extensive material on special cave areas, and of these, the volume by Rev. Julian Edmund Woods, F.G.S., F.R.S.V., F.P.S., etc., and is one of the most interesting. This book gives the ideas and beliefs of 100 years ago concerning the origin, development and bone contents of caves and makes interesting reading in the light of more recent studies of cave origins. Wood's study "Geological Observations in South Australia : Principally in the District South-East of Adelaide" was published in 1862 by Longman, Green, Roberts and Green, London. In a preface dated November 15, 1861, Rev. Woods points out that the book was written while he was serving as a missionary in a 22,000 square mile district, and "without the benefit of reference, museum, library, or scientific men closer than England". Up to the time of writing, almost no scientific or geological work had been done in South Australia and much of the area was completely unexplored. The book, also, contained the first detailed description of caves in the south-east of the state. Father Woods writes about many different types of caves in South Australia, for instance, the "native wells" in the Mt. Gambier/Mt. Shanck area. These are caves, rounded like pipes, and generally leading to water level. Woods points out their likeness to artificial wells. He also writes of sea cliff caves, particularly in the Guichen Bay area, and blow holes caused by the action of the waves on the limestone cliffs. Woods discusses many other types of caves found further inland, particularly bone caves. Father Woods discusses cave origins under two sub-heads: 1. Trap rock caves generally resulting from violent igneous action, and 2. Limestone caves resulting from infiltration of some kind. He is mainly concerned with limestone caves which he sub-divides into (a) crevice caves - caves which have arisen from fissures in the rock and are therefore wedge-shaped crevices, widest at the opening, (b) sea-beach caves, caves which face the seashore and are merely holes that have been worn by the dashing of the sea on the face of the cliff, (c) egress caves, or passages to give egress to subterranean streams, (d) ingress caves, or passages caused by water flowing into the holes of rocks and disappearing underground. These caves would have entrance holes in the ground, opening very wide underneath, and having the appearance of water having entered from above, (e) finally a group of caves which he lists by use as "dens of animals".

Water Sampling at Yarrangobilly, New South Wales, 1963, Jennings, J. N.

Various geomorphologists such as Bgli, Corbel and Lehmann have in recent years demonstrated the interest that certain simple chemical analyses of natural waters can have for the comparison of rates of limestone solution in different in different climatic conditions. They can also have their relevance for the tracing of underground water connections as Oertli (1953) has shown in the example of the Slovenian part of the classical Yugoslavian karst. Since 1957, the writer has therefore been making such analyses of waters from Australian limestone areas. The chief significance of these measurements comes when one caving area is compared with another. M.M. Sweeting (1960) has already commented briefly on observations from Mole Creek, Tasmania, Buchan, Victoria and the Fitzroy Basin, Western Australia, made in 1958-59 by herself and the writer; further discussion will appear in a forthcoming publication of ours on the Limestone Ranges of the Fitzroy Basin. Nevertheless measurements of this kind can have a certain intrinsic interest as it is hoped to show in the following notes on the few observations I made at Yarrangobilly. These observations are set out in tabular and Trombe graph forms; the locations of the collecting points are shown on the map.

Caves of the Coastal Areas of South Australia, 1965, Sexton, R. T.

The majority of South Australian caves occur in the Tertiary and Quaternary limestones of the coastal areas. Their distribution is discussed here on a geological rather than a geographical basis. The most significant caves are briefly described and illustrated to indicate different types and related developments in the coastal limestones. The most notable feature of the limestones is their soft, porous nature. Caves also occur in South Australia in hard, massively bedded Cambrian and Pre-Cambrian limestones and dolomites. These are not discussed in the present paper. To facilitate recording, South Australia has been divided into six zones as shown in Figure 1, and the caves numbered in order of discovery in each area. In general, both the name and the number of the cave have been given, but unnamed caves are specified by number only. The cave maps have been chosen to give as wide a coverage as possible of the various types, or to illustrate points of particular interest. The arrows on the section lines show the direction of viewing, and the sections are numbered to relate them to the plans. Where a cross-section and longitudinal section intersect, the common line has been drawn to relate the sections. The same scale has been used throughout for ease of comparison.

Bat Erosion in Australian Limestone Caves, 1965, Dwyer, P. D.

The clustering areas of bent-winged bats in limestone caves are frequently stained and etched. This staining is very intense, and covers large areas at breeding caves present in Palaeozoic limestones. Erosion of limestone is very conspicuous in these caves. Staining is not intense at breeding caves in Tertiary limestones, but a combination of chemical and mechanical erosion may, in part, account for the depth of dome pits in which the bats cluster. Certain caves that are characterised by extensive guano deposits and by conspicuously eroded and/or stained limestone, but which are currently without large colonies of bats, may represent ancestral breeding caves.

The geographical distribution of Australian cave dwelling Chiroptera., 1966, Hamiltonsmith E.
Of the 56 species of bats currently recorded from Australia, 22 are known to occur in caves. The geographical distribution of each of these species is detailed, and from this data, the species are divided into four groups according to their pattern of distribution. Group I comprises those species found only North of 18S latitude, all of which either also occur in New Guinea or are closely related to New Guinea species. Group II, including both endemic Australian genera, occurs over that area North of 28S latitude. This area largely comprises desert or semi-desert terrain, with its characteristics of low humidity and a wide range between extremes of temperature. Group III occurs in the Eastern Coastal Region, with one species extending to a limited degree along both Northern and Southern Coasts. Although temperature is extremely varied over this range, there are common environmental factors of moderate to high humidity and a moderate to low range of temperature variation. Group IV species are all widespread, in many cases over the whole continent, are all members of the Vespertilionidae, and occur in caves only occasionally or only in certain parts of their range. These species are more commonly found in trees or buildings. The possible factors contributing to the origin of these distributional patterns are discussed, and some areas for future investigation suggested.

Breeding Caves and Maternity Colonies of the Bent-Winged Bat In South-Eastern Australia, 1966, Dwyer P. D. , Hamiltonsmith E.

Eight breeding Caves of Miniopterus schreibersi (Kuhl) are described from South Australia, Victoria, New South Wales and Southern Queensland, in terms of their structure, the location of nursery areas at which juveniles are deposited after birth, and their physical environments. Maternity colonies are found at these caves through spring, summer and early autumn. Established colonies range from about 15,000 to 200,000 bats at peak size. These individuals are predominantly adult females and their young. Adult males are conspicuous only at the single South Australian breeding cave. Births occur from approximately the beginning of December to mid-January at all colonies except that in South Australia, where a birth period is evident between mid-October to late-November. Artificial warming, as a consequence of bat activity, appears to be characteristic of these Miniopterus schreibersi breeding caves. It is suggested that this may have functional significance in facilitating adequate development of juveniles, and that the habit could be a reflection of the tropical ancestry of this species.

Caves of the Chillagoe District, North Queensland, 1966, Hamiltonsmith, E.

The caves of the Chillagoe District are well-known by repute, but have not been described in speleological literature to date. The author visited the area in April, 1964, in company with Mr. D. Fitzsimon, of Mareeba. This paper summarises the observations made on that occasion. Chillagoe is an almost deserted town, once the centre of an extensive mining industry, and is situated about 120 miles west of Cairns, North Queensland. Access may be gained either by road or rail from Cairns. It can be seen from Table 1 that the climate is monsoonal, with comparatively heavy summer rains, but with dry weather throughout the remainder of the year. The Silurian Limestone in which the caves occur forms a belt some 40 miles long by four miles wide, extending from Almaden in the south-east to the Walsh River in the north-west. Caves probably occur throughout much of this belt, but known caves are concentrated in the Chillagoe and Mungana areas. Mungana lies approximately ten miles north-west of Chillagoe.

Lithophagic Snail from Southern British Honduras, 1967, Craig Ak,
A freshwater gastropod, Pachycheilus glaphyrus, responsible for unusual erosion in limestone has been located in southern British Honduras where it is abundant in streams flowing through areas of karst topography. These snails ingest algae that proliferate in solution grooves formed at the fluctuating air-water interface. Rasping action of the radula results in deepening of these grooves and appears to improve the algal habitat

Results 1 to 15 of 825
You probably didn't submit anything to search for