Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
Search in KarstBase
![]() |
![]() |
Most concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10−6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10−7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the importance of matrix permeability in eogenetic karst and suggest new concepts may be necessary to describe how conduits develop within these porous rocks.
Crayback stalagmites have mainly been reported from New South Wales, Australia. Here we document a small crayback in the entrance of Painted Cave (Kain Hitam), part of the Niah Caves complex in Sarawak, Borneo. Measuring some 65 cm in length and 18 cm in height, this deposit is elongate in the direction of the dominant wind and thus oriented towards the natural tunnel entrance. It shows the classic humpbacked long profile, made up of small transverse segments or plates, in this case the tail extending towards the entrance. The dark blue-green colour down the centre suggests that cyanobacterial growth follows the track of the wind-deflected roof drip. The dry silty cave sediment provides material for accretion onto the biological mat. This is the only example known from Borneo and one of the very few known from outside of Australia
Clastic sedimentary rocks are generally considered non-karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst-like characteristics, flow behavior and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi-tracer tests with fluorescent dyes and bacteria-sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (i) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (ii) microbial contaminants are rapidly transported towards springs; and (iii) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different ground water protection strategies than currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability.
style=
Three new hypogean species of the Iberian genus Roncocreagris Mahnert, 1974 are described from mainland Portugal: R. borgesi sp. nov. and R. gepesi sp. nov. from caves in the Sicó massif, and R. occidentalis sp. nov. from caves in the Montejunto and Cesaredas karst plateau. This brings to nine the number of known hypogean species of the mostly Iberian genus Roncocreagris: five from Portugal and four from Spain. Ecological comments and new localities for some of the previously known species are also included.
An ecological study of the microarthropod communities from Las Sardinas cave was undertaken. Four different biotopes were studied over the course of a year: bat guano, litter, soil under the chemoautotrophic bacteria colonies and as a control, plain soil without litter or guano. A total of 27,913 specimens of a total of 169 species were collected. Analysis of Variance (ANOVA) showed that there is a significant effect of biotope on the recorded density, and the post hoc Tukey’s test showed that guano is the most different biotope with the highest value of density recorded. The interaction between season and biotope variables was not significant. In the most extreme case, 99 percent of the microarthropods in soil under chemoautotrophic bacteria were mites, mainly in the family Histiostomidae.
Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high-flow events in an 18-month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high-flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite-difference model including high-conductivity cells representing the conduit network (“discrete-continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high-flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions.
Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton–Raphson expression and a Gauß–Seidel or successive over-relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW-2005. It substantially reduces the computational effort as demonstrated by steady-state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.
Do you want to read the rest of this publication?
![]() |
![]() |