Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That upside-down channel is see ceiling channel.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for biokarst (Keyword) returned 8 results for the whole karstbase:
BACTERIA, FUNGI AND BIOKARST IN LECHUGUILLA CAVE, CARLSBAD-CAVERNS-NATIONAL-PARK, NEW-MEXICO, 1995, Cunningham Ki, Northup De, Pollastro Rm, Wright Wg, Larock Ej,
Lechuguilla Cave is a deep, extensive, gypsum- and sulfur-bearing hypogenic cave in Carlsbad Caverns National Park, New Mexico, most of which (> 90%) lies more than 300 m beneath the entrance. Located in the arid Guadalupe Mountains, Lechuguilla's remarkable state of preservation is partially due to the locally continuous Yates Formation siltstone that has effectively diverted most vadose water away from the cave. Allocthonous organic input to the cave is therefore very limited, but bacterial and fungal colonization is relatively extensive: (1) Aspergillus sp. fungi and unidentified bacteria are associated with iron-, manganese-, and sulfur-rich encrustations on calcitic folia near the suspected water table 466 m below the entrance; (2) 92 species of fungi in 19 genera have been identified throughout the cave in oligotrophic (nutrient-poor) ''soils'' and pools; (3) cave-air condensate contains unidentified microbes; (4) indigenous chemoheterotrophic Seliberius and Caulobacter bacteria are known from remote pool sites; and (5) at least four genera of heterotrophic bacteria with population densities near 5 x 10(5) colony-forming units (CFU) per gram are present in ceiling-bound deposits of supposedly abiogenic condensation-corrosion residues. Various lines of evidence suggest that autotrophic bacteria are present in the ceiling-bound residues and could act as primary producers in a unique subterranean microbial food chain. The suspected autotrophic bacteria are probably chemolithoautotrophic (CLA), utilizing trace iron, manganese, or sulfur in the limestone and dolomitic bedrock to mechanically (and possibly biochemically) erode the substrate to produce residual floor deposits. Because other major sources of organic matter have not been detected, we suggest that these CLA bacteria are providing requisite organic matter to the known heterotrophic bacteria and fungi in the residues. The cavewide bacterial and fungal distribution, the large volumes of corrosion residues, and the presence of ancient bacterial filaments in unusual calcite speleothems (biothems) attest to the apparent longevity of microbial occupation in this cave

Effects of biokarstic processes on the development of solutional rillenkarren in limestone rocks., 1996, Fiol L. , Fornos J. J. , Gines A.

Geomicrobiology of caves: A review, 2001, Northup D. E. , Lavoie K. H. ,
In this article, we provide a review of geomicrobiological interactions in caves, which are nutrient-limited environments containing a variety of redox interfaces. Interactions of cave microorganisms and mineral environments lead to the dissolution of, or precipitation on, host rock and speleothems (secondary mineral formations). Metabolic processes of sulfur-, iron-, and manganese-oxidizing bacteria can generate considerable acidity, dissolving cave walls and formations. Examples of possible microbially influenced corrosion include corrosion residues (e.g., Lechuguilla and Spider caves, New Mexico, USA), moonmilk from a number of caves (e.g., Spider Cave, New Mexico, and caves in the Italian Alps), and sulfuric acid speleogenesis and cave enlargement (e.g., Movile Cave, Romania, and Cueva de Villa Luz, Mexico). Precipitation processes in caves, as in surface environments, occur through active or passive processes. In caves, microbially induced mineralization is documented in the formation of carbonates, moonmilk, silicates, clays, iron and manganese oxides, sulfur, and saltpeter at scales ranging from the microscopic to landscape biokarst. Suggestions for future research are given to encourage a move from descriptive, qualitative studies to more experimental studies

Biokarst, 2003, Viles H. A.

Stalactites extrieures dans les karsts tropicaux humides. Dpts stalagmitiques de tufs calcaires, 2004, Taborosi Danko, Hirakawa Kazuomi
Outside Stalactites in humid tropical karst Stalactitic deposits of calcareous tufa - Friable and porous stalactitic deposits composed of calcareous tufa rather than sparry calcite characteristic of normal cave stalactites are often encountered in the entrances of caves and plastered to cliffs in the humid tropics. Tufaceous stalactitic outside deposits are frequently mentioned in literature but are typically dismissed in a few sentences, even in review articles dedicated to calcareous tufa. Mostly based on fieldwork in the Mariana Island, we have identified a variety of depositional settings where stalactitic tufa occurs. These settings can be grouped into spelean, transitional, epigean, and littoral realms. Centimetre to tens of meters in scale, their overall shapes can be quite irregular, with crooked, bulbous, pendant-like, light-oriented and other deflected forms exceedingly common. The outside surfaces of these stalactites invariably lack the crystalline luster of cave speleothems and feel wet and pasty, or powdery and earthy when dry. They are often covered with organic coatings. Stalactitic tufas are generally lightweight, porous, and friable, and many small specimens are weak enough to be plucked by hand. Composed of layered microcrystalline material, sometimes reminiscent of chalk, these stalactites exhibit a bewildering variety of fabrics, which can be classified as encrusted, amorphous, and laminated. In addition, they contain much organic material, microbial structures, and detrital grains. A wide array of biota is associated with these features, and they are thought to form by biogenic mechanisms superimposed on abiotic physico-chemical precipitation from karst water. Biologic processes involved in the formation of stalactitic tufa are numerous and appear to involve hundreds of species. While it is now clear that stalactitic tufas are a result of abiotic and biogenic deposition, an additional possibility remains to be considered. It is not improbable that tufa-like stalactites could form by decay and diagenesis of true cave speleothems, if the latter are exposed at the land surface conditions. Stalactitic tufas represent a unique, subaerial variety of calcareous tufa rarely deliberated in karst literature.

Biokarstification, 2004, Viles H.

Morphology and origin of coastal karst landforms in Miocene and Quaternary carbonate rocks along the central-western coast of Sardinia (Italy), 2009, De Waele Jo, Mucedda Mauro, Montanaro Luca

In the area of Punta Funtanas (Arbus, Central-West Sardinia) somesmall surfaces ofMiocene limestones crop out, partially covered with Quaternary calcarenites and Plio-Quaternary basalts. The biggest of these outcrops forms a fossilwave-cut shore platformof up to 50m wide with an altitude above sea level of approximately 4–5m. On this platformawide variety of dissolution landforms can be observed. Thesemorphologies are related to the influence of the seawater (zone of wave action, marine splash and spray zone, up to progressively more continental environments) and to biokarst processes (erosional action ofmarine organisms, algae andmicro-organisms) and are arranged in bands parallel to the coast, corresponding to different morphological zones.

This paper describes all the karst landforms observed in this coastal area from a morphological and genetic point of view.


Seawater and Biokarst Effects on Coastal Limestones, 2013, De Waele J. , Furlani S.

Coastal limestones are characterized by a typical set of morphologies throughout the world, related to a combination of physical, chemical, and biological processes, the relative importance of each depends on geographical and local conditions. In tropical and temperate areas biological processes are dominant, whereas at high latitudes physical abrasion becomes more important. The morphology of limestone coasts depends on a wide set of interrelated processes that are locally contingent and, therefore, cannot be described by a global scheme


Results 1 to 8 of 8
You probably didn't submit anything to search for