Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That uvala is 1. a multi-coned closed depression; now little-used term of croat, serb or bulgarian origin. the term was introduced to describe features assumed to be the second step in a 3-stage process of polje development, in which dolines were supposed to coalesce into uvalas. this mechanism is no longer accepted and the term uvala has fallen into disuse [9]. 2. large closed depression formed by the coalescence of several dolines which have enlarged towards each other. typically, the floor is irregular, being a combination of doline floors and degraded slopes of the individual hollows [19]. 3. a yugoslavian term for an elongated closed depression in karst that is commonly dry or with periodical small sinking streams or inundations. they are generally a few hundred meters long and may be considered as a small polje [20]. synonyms: (american.) compound doline; (french.) cuvala; (german.) uvala; (greek.) ouvala; (italian.) avvalamento carsico, uvala; (russian.) uvala; (spanish.) uvala; (turkish.) koyak; kokurdan; (yugoslavian.) draga. see also canyon; karst valley; valley sink. related to polje.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for biomineralization (Keyword) returned 7 results for the whole karstbase:
Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, northern Spain), 1999, Canaveras Jc, Hoyos M, Sanchezmoral S, Sanzrubio E, Bedoya J, Soler V, Groth I, Schumann P, Laiz L, Gonzalez I, Sainzjimenez C,
Microbial communities, where Streptomyces species predominate, were found in association with hydromagnesite, Mg-5(CO3)(4)(OH)(2). 4H(2)O, and needle-fiber aragonite deposits in an Altamira cave. The ability to precipitate calcium carbonate in laboratory cultures suggests that these and other bacteria present in the cave may play a role in the formation of moonmilk deposits

Geomicrobiology of caves: A review, 2001, Northup D. E. , Lavoie K. H. ,
In this article, we provide a review of geomicrobiological interactions in caves, which are nutrient-limited environments containing a variety of redox interfaces. Interactions of cave microorganisms and mineral environments lead to the dissolution of, or precipitation on, host rock and speleothems (secondary mineral formations). Metabolic processes of sulfur-, iron-, and manganese-oxidizing bacteria can generate considerable acidity, dissolving cave walls and formations. Examples of possible microbially influenced corrosion include corrosion residues (e.g., Lechuguilla and Spider caves, New Mexico, USA), moonmilk from a number of caves (e.g., Spider Cave, New Mexico, and caves in the Italian Alps), and sulfuric acid speleogenesis and cave enlargement (e.g., Movile Cave, Romania, and Cueva de Villa Luz, Mexico). Precipitation processes in caves, as in surface environments, occur through active or passive processes. In caves, microbially induced mineralization is documented in the formation of carbonates, moonmilk, silicates, clays, iron and manganese oxides, sulfur, and saltpeter at scales ranging from the microscopic to landscape biokarst. Suggestions for future research are given to encourage a move from descriptive, qualitative studies to more experimental studies

Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy), 2004, Cacchio P, Contento R, Ercole C, Cappuccio G, Martinez Mp, Lepidi A,
Much is known about the bacterial precipitation of carbonate rocks, but comparatively little is known about the involvement of microbes in the formation of secondary mineral structures in caves. We hypothesized that bacteria isolated from calcareous stalactites, which are able to mediate CaCO3 precipitation in vitro, play a role in the formation of carbonate speleothems. We collected numerous cultivable calcifying bacteria from calcareous speleothems from Cervo cave, implying that their presence was not occasional. The relative abundance of calcifying bacteria among total cultivable microflora was found to be related to the calcifying activity in the stalactites. We also determined the delta(13)C and delta(18)O values of the Cervo cave speleothems from which bacteria were isolated and of the carbonates obtained in vitro to determine whether bacteria were indeed involved in the formation of secondary mineral structures. We identified three groups of biological carbonates produced in vitro at 11degreesC on the basis of their carbon isotopic composition: carbonates with delta(13)C values ( a) slightly more positive, (b) more negative, and (c) much more negative than those of the stalactite carbonates. The carbonates belonging to the first group, characterized by the most similar delta(13)C values to stalactites, were produced by the most abundant strains. Most of calcifying isolates belonged to the genus Kocuria. Scanning electron microscopy showed that dominant morphologies of the bioliths were sherulithic with fibrous radiated interiors. We suggest a mechanism of carbonate crystal formation by bacteria

Microbial Communities and Associated Mineral Fabrics in Altamira Cave, Spain., 2009, Cuezva S. , Sanchezmoral S. , Saizjimenez C. And Caaveras J. C.
Evidences of microbial colonizations were observed in Altamira Cave, Spain. These consisted of distinct small coloured colonies, both on walls and ceiling, mainly located in the area near the cave entrance, which progressed until reaching the Polychromes Hall. The colonizations were characterized by a high morphological and microstructural variability and related to biomineralization processes. Two main types of CaCO3 deposits were related to the colonies: rosette- or nest-like aggregates of rhombohedral calcite crystals, and spheroid to hemispheroid CaCO3 elements. Colonies distribution seems to be controlled by microenvironmental conditions inside the cavity. The areas of the cave showing higher temperature, relative humidity, and CO2 concentration fluctuations presented a minor biomineralization capability.

Microbial Communities and Associated Mineral Fabrics in Altamira Cave, Spain., 2009, Cuezva S. , Sanchezmoral S. , Saizjimenez C. , Caaveras J. C.

Evidences of microbial colonizations were observed in Altamira Cave, Spain. These consisted of distinct small coloured colonies, both on walls and ceiling, mainly located in the area near the cave entrance, which progressed until reaching the Polychromes Hall. The colonizations were characterized by a high morphological and microstructural variability and related to biomineralization processes. Two main types of CaCO3 deposits were related to the colonies: rosette- or nest-like aggregates of rhombohedral calcite crystals, and spheroid to hemispheroid CaCO3 elements. Colonies distribution seems to be controlled by microenvironmental conditions inside the cavity. The areas of the cave showing higher temperature, relative humidity, and CO2 concentration fluctuations presented a minor biomineralization capability.


Insights into Cave Architecture and the Role of Bacterial Biofilm, 2013,

Caves offer a stable and protected environment from harsh and changing outside conditions. They lend living proof of the presence of minute life forms that delve deep within the earth’s crust where the possibility of life seems impossible. Devoid of all light sources and lacking the most common source of energy supplied through photosynthesis, the mysterious microbial kingdom in caves are consequently dependent upon alternative sources of energy derived from the surrounding atmosphere, minerals and rocks. There are a number of features that can be observed within a cave that may serve as evidence of microbial activity, for example, formation of biofilms comprised of multiple layers of microbial communities held together by protective gel-like polymers which form complex structures. Different bacterial biofilms can develop on the walls of the cave which can be visually distinguished by their colorations. Moreover, the pH generated by the metabolism of bacterial biofilm on the cave environment can lead to precipitation or dissolution of minerals in caves. Caves also offer an excellent scenario for studying biomineralization processes. The findings on the association of bacteria with secondary minerals as mentioned in this review will help to expand the existing knowledge in geomicrobiology and specifically on the influence of microorganisms in the formation of cave deposits. This paper reviews the current state of knowledge of biospeleology of caves and the associated bacterial biofilms. Recommendations for future research are mentioned to encourage a drift from qualitative studies to more experimental studies.


Microbial mediation of complex subterranean mineral structures, 2015, Tirato Nicola, Torriano Stefano F. F, Monteux Sylvain, Sauro Francesco, De Waele Jo, Lavagna Maria Luisa, D’angeli Ilenia Maria, Chailloux Daniel, Renda Michel, Eglinton Timothy I. , Bontognali Tomaso Renzo Rezio

Helictites—an enigmatic type of mineral structure occurring in some caves—differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control.

Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO3, and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes.


Results 1 to 7 of 7
You probably didn't submit anything to search for