Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That evaporate is a sedimentary rock formed by evaporation and precipitation of saline waters [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for birnessite (Keyword) returned 9 results for the whole karstbase:
On the Wad-Minerals from the Cavern Environment., 1983, Kashima Naruhiko
The wad-minerals from limestone caves of Yugoslavia, China and Japan were studied. X-ray diffraction analysis revealed five minerals; birnessite, 10A-manganite, pyrolusite, todorokite and goethite. The heavy metal elements, Mn, Zn, Fe and Cr have been detected by X-ray fluorescence analysis and their contents were roughly determined. The condensation water introduced directly from the covering soils formed by the continental weathering and the deriving corrosive water interaction with limestone could be the input sources of manganese and other metal elements into the system.

Presence of Rare-Earth Elements in Black Ferromanganese Coatings from V?ntului Cave (Romania), 1997, Onac, B. P. , Pedersen, R. B. , Tysseland, M.
This study examines the rare-earth elements (REEs) found in ferromanganese coatings covering both sandy alluvium and submerged boulders in an underground stream from V?ntului Cave, Romania. The black ferromanganese sediments are mainly composed of birnessite and other poorly-crystallized manganese oxide and hydroxides (pyrolusite, romanechite, todorokite, rhodochrosite) as well as goethite and kaolinite. Scanning electron microscope and EDX analyses performed on the black ferromanganese sediments show the material to have concentrated considerable amounts of REEs (La, Ce, Sm, Nd) in iron-rich spheres that build up botryoidal-like aggregates. The correlation of 143Nd/144Nd ratio for 6 different samples indicates that the REEs were concentrated in the cave environment after being leached from bauxitic and red residual clays from above the cave. Based on our observations, we conclude that an increase in pH resulted in adsorption of REE onto the surface of ferromanganese minerals. This study demonstrates the potential of using Nd isotopes as a tool for paleochemistry studies of the cave environment.

Terrestrial hot-spring Co-rich Mn mineralization in the Pliocene-Quaternary Calatrava Region (central Spain), 1997, Crespo A, Lunar R,
Central Spain hosts a series of high-Co (up to 1.7% Co) Mn mineralizations displaying a variety of morphologies: spring aprons and feeders, pisolitic beds, wad beds and tufa-like replacements of plants and plant debris. The Mn mineralogy consist of cryptomelane, lithiophorite, birnessite and todorokite. The spring apron deposits formed in close proximity to Pliocene volcanic rocks (alkaline basaltic lava flows and pyroclastics) belonging to the so-called Calatrava Volcanic Field. The spring aprons are found along or near to normal faults bounding small basins and topographic highs. Mn tufa-like deposits are found near to the spring sources, while both pisolitic and wad beds are clearly distal facies occuring well within the Pliocene basins. The two latter are interbedded with clastic lacustrine and fluvial sediments. Collectively, these deposits contain a complex suite of Mn-(Co) mineralization ranging from proximal, hot-spring-type Mn facies, grading into more distant sedimentary, stratabound mineralization. Volcanism, basin formation and Mn deposition took place within a failed rift environment which triggered hydrothermal activity and Mn-(Co) deposition as proximal (near to the volcanic axes) and distal (of sedimentary affinities, within the basins) facies

On the genetic conditions of black manganese deposits from two caves of Eastern Serbia., 2001, Ljubojevic V. , Pafevski A. , Calicljubojevic J.
Portions of cave passages often have a black colour due to manganese deposits that occur as coatings on cave walls and ceilings, on clastic sediments, as well as on speleothems. On samples from the cave Buronov Ponor chemical analysis, infrared spectroscopy. X-ray diffraction and DTA analysis confirmed the presence of birnessite. In cave Cerjanska Pecina, the presence of manganese compounds in the black coating has been confirmed by chemical tests. In both caves it has been noted that cave passages with black coating have a distinct morphology. They are highly weathered showing an abundance of sharp prolusions, potholes in the streambed and scallops. The paper studies these occurrences and the possible link between the manganese deposition, hydrology and morphology of the passages and petrologic composition. Although this link was not identified, some interesting questions regarding manganese deposition arose. It remains unclear why manganese deposition is limited only to a certain part of cave Cerjanska Pecina, and what caused the cyclicity in manganese deposition in the cave Buronov ponor. manganese deposits, chemical analysis, speleomorphology

Ochtin Aragonite Cave (Slovakia): morphology, mineralogy and genesis, 2005, Bosk P. , Bella P. , Cilek V. , Ford D. C. , Hercman H. , Kadlec J. , Osborne A. , Pruner P. ,

Ochtiná Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The limestones, partly metasomatically altered to ankerite and siderite, occur as lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained.
Mn-rich loams with Ni-bearing asbolane and birnessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. TIMS and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka – Alleröd) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave.


Geomicrobiology of cave ferromanganese deposits: A field and laboratory investigation, 2005, Spilde M. N. , Northup D. E. , Boston P. J. , Schelble R. T. , Dano K. E. , Crossey L. J. , Dahm C. N. ,
Unusual ferromanganese deposits are found in several caves in New Mexico. The deposits are enriched in iron and manganese by as much as three orders of magnitude over the bedrock, differing significantly in mineralogy and chemistry from bedrock-derived insoluble residue. The deposits contain metabolically active microbial communities. Enrichment cultures inoculated from the ferromanganese deposits produced manganese oxides that were initially amorphous but developed into crystalline minerals over an 8-month period and beyond; no such progression occurred in killed controls. Phylogenetic analyses of sequences from clone libraries constructed from culture DNA identified two genera known to oxidize manganese, but most clones represent previously unknown manganese oxidizers. We suggest that this community is breaking down the bedrock and accumulating iron and manganese oxides in an oligotrophic environment

The mineralogy and trace element chemistry of black manganese oxide deposits from caves, 2009, White W. B. , Vito C. , And Scheetz B. E.

Free surface streams in caves and their surface infeeders often contain pebbles and cobbles coated with black manganese oxide minerals. Coating thicknesses vary from fractions of a millimeter to a few millimeters. In addition, a few caves contain loose masses of black oxide material. The results reported here are based on examination of 39 specimens and detailed chemical analyses of 18 of them. Most of the coatings are amorphous to x-rays, with at best, only a few broad diffraction lines. Infrared spectroscopy shows that most of the specimens are birnessite, with evidence for romanechite, ranceite, and pyrolusite in a few specimens. All specimens contain both iron and manganese, but the Mn/Fe ratio varies widely. Many specimens are enriched in Ba but depleted in Sr. The manganese and iron oxides contain the transition metals Co, Cu, Ni, V, and Zn in concentrations greater than 0.5 wt% in some specimens. Minor Cr and Mo also occur. Given the extremely low concentrations of these elements expected in freshwater streams in carbonate terrains, the manganese oxides exert a dramatic amplifying effect over the expected background. Manganese oxides appear to act as a dosimeter for heavy metals in karst waters.


Black Mn-Fe Crusts as Markers of Abrupt Palaeoenvironmental Changes in El Soplao Cave (Cantabria, Spain), 2011, Gzquez Fernando, Calaforra Jose Maria, Forti Paolo

Peculiar iron and manganese deposits coating walls, floors and ceilings of many galleries are one of the special features of the El Soplao Cave (Cantabria, Spain). These speleothems appear to have been deposited over wall clay deposits, as well as forming part of flowstones. Structure of crusts is essentially amorphous but several manganese and iron oxides were identified like goethite and birnessite, though all occur with a low degree of crystallinity. In the outer layer of the crusts, alteration iron minerals appear that derive from previous minerals in a process probably mediated by microorganisms. EDX microanalyses report fairly high values of Fe and Mn in the crusts, though the Mn/Fe ratio varies considerably as a function of distance from the substrate/bedrock. The present study proposes a genetic model for crust speleothems in El Soplao, based on oscillations of the phreatic level. The origin of these deposits is related to mobilization, under phreatic conditions, of polymetallic sulfides in the host rock. Metal ions (including Fe²⁺ and Mn²⁺) released into the cave under reducing conditions, are oxidized and fixed in a process mediated by bacteria, giving rise to oxides and hydroxides of low crystallinity. The presence of various black intercalated layers in aragonite flowstones indicate periods when cave conditions suddenly changed from vadose, when aragonite is precipitated, to phreatic and epiphreatic conditions, when the Mn-Fe deposits are precipitated. Subsequently, vadose conditions were re-established, leading to the final stages of precipitation of aragonite recorded in the flowstone and recent aragonite helictites on the surface of the Mn-Fe crusts.


Uncommon cave minerals associated to hypogene speleogenesis in Southern France, 2013, Audra, Philippe

Five hypogenic-origin caves from Southern France are presented. Investigations using XRD, SEM and Raman spectroscopy, reveal the presence of uncommon cave minerals. Oilloki Cave is a small lead ore mine-cave containing galena, cerussite, and bismuth (present as native element or as sulfide).La Baume Cave is a hydrothermal breccia-pipe, filled with colorful (red, green, white) clays. Some of the clay minerals (clinochlore se-piolite), could originate from hydrothermal weathering of clastic material. The Mala-coste Quarry, harbors a hydrothermal chimney with enlarged vugs lined with calcite spar and filled with iron oxyhydroxides poolfingers (goethite-hematite) and manganese oxides (birnessite, todorokite). Deposition of iron and manganese oxides results of the pH-Eh evolution along the hydrothermal chimney. Pigette Cave is a hydrothermal ver-tical maze with calcite lining and small iron oxyhydroxides and manganese oxides mass-es. The hydrothermal weathering of the walls deposited grains of lithiophorite, barite, and celadonite, which could originate from glauconite. Baume Galinière Cave is a small horizontal maze originating from the oxidation of sulfide masses of pyrite. Beside the common byproducts (gypsum, goethite, sulfur), the six members of the jarosite sub-group are present: jarosite, ammoniojarosite, argentojarosite, hydronium jarosite, natro-jarosite, plumbojarosite, together with fibroferrite. In these caves, three minerals are new cave minerals (bismuth, celadonite, argentojarosite); some others have been men-tioned before only in a few caves worldwide (clinochlore, lithiophorite, ammoniojaro-site, hydronium jarosite, natrojarosite, plumbojarosite, fibroferrite). The mineralogene-sis involves different processes: (i) Deposition in mixing zone from species carried by rising deep flow (barite, galena, bismuth, birnessite, todorokite, lithiophorite); (ii) Hy-drothermal weathering of clay minerals contained in host rock or present as clastic sediments (clinochlore, sepiolite, celadonite); (iii) Oxidation of sulfide masses (goethite, cerussite, jarosite subgroup minerals, fibroferrite).


Results 1 to 9 of 9
You probably didn't submit anything to search for