Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That radius of influence is the radial distance from the center of a well bore to the point where there is no lowering of the water table or potentiometric surface (the edge of its cone of depression) [6].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for breccia (Keyword) returned 194 results for the whole karstbase:
Showing 1 to 15 of 194
Breccia and Pennsylvanian cave filling in Mississippian Saint Louis Limestone, Putnam County, Indiana, 1961, Smith Ned Myron, Sunderman Jack Allen, Melhorn Wilton Newton,
A limestone breccia and several bodies of shale and sandstone in Mississippian St. Louis limestone were discovered in a quarry opened during the summer of 1959 in the SE1/4NW1/4 sec. 15, T.15N., R.4W., Putnam County. A small mass of sandy limestone conglomerate overlay part of the breccia. Nearly all these bodies have been removed in quarrying. The breccia and the shale-sandstone masses appear to have originated from 2 separate geologic processes which occurred at 2 different times. The origin of the breccia is in doubt because not enough critical evidence is available to prove conclusively and single origin. The authors believe, however, that the breccia probably is the product of a submarine rock slump during St. Louis time which was triggered by the tectonic activity that initiated early movements along the Mt. Carmel fault. Other possible origins, such as solution of evaporites accompanied by collapse of overlying rock or formation of caves in a karst terrain followed by roof collapse, are not supported by the evidence observed. The shale-sandstone bodies are believed to be rocks of Pennsylvanian age which were deposited in caverns developed during the Mississippian-Pennsylvanian erosion interval. The limestone conglomerate is probably of the same age as the shale-sandstone bodies

Genesis of the Ordovician zinc deposits in east Tennessee, 1965, Hoagland Alan D. , Hill William T. , Fulweiler Robert E. ,
Zinc occurs in low-iron sphalerite associated with gangue dolomite in dissolution breccias and collapse structures in dolomitized limestone and interbedded fine-grained 'primary' dolomite. These breccias and collapse structures were developed as part of a karst-sinkhole complex formed at depths up to 800 feet below the top of the Knox Dolomite during widespread emergence at the end of Early Ordovician time. Mineralization was completed before the rocks were tilted, and clearly antedates the Appalachian orogeny. Source of hydrothermal solutions is not known

Fossil karst with Mesozoic bone breccia in Czatkowice (Cracow Upland, Poland), 1982, Paszkowski Mariusz, Wieczorek Jzef

The Coxco Deposit; a Proterozoic mississippi valley-type deposit in the McArthur River District, Northern Territory, Australia, 1983, Walker R. N. , Gulson B. , Smith J. ,
Strata-bound dolomite-hosted lead-zinc deposit. Crusts of colloform sphalerite, galena, pyrite, and marcasite (stage I mineralization) were deposited on the surfaces of the karst-produced solution cavities. Reduced sulfur was produced by sulfate-reducing bacteria within the karst system. A second stage of mineralization consisting of coarsely crystalline sphalerite, galena, pyrite, and marcasite occurs in veins and as the matrix for dolomite breccias.--Modified journal abstract

Genesis of paleokarst and strata-bound zinc-lead sulfide deposits in a Proterozoic dolostone, northern Baffin Island, Canada, 1984, Olson R. A. ,
Society Cliffs Formation; episodes of karstification since its deposition. During the first karst episode an evaporite solution-collapse breccia formed ubiquitously on the western Borden Peninsula. During the second karst episode a holokarst developed and an integrated cave system was formed. The caves subsequently were filled with sulfides and carbonate minerals; several interesting sedimentary structures exist in the zinc-lead sulfide deposits. The ore fluid and contained metals are postulated to have been derived during a late-stage dewatering of the black shale that underlies the Society Cliffs Formation. Sulfide deposition may have been caused by chemical reduction of sulfate that existed in the ore fluid when the fluid entered hydrocarbon-filled caves. During the third and fourth episodes of karstification, only merokarst developed in the Society Cliffs Formation. Karst effects which formed during these episodes include oxidized sulfide deposits and surface solution corridors.--Modified journal abstract

Lichen and algae; agents of biodiagenesis in karst breccia from Grand Cayman Island, 1985, Jones Brian, Kahle C. F. ,

Nature and genesis of breccia bodies in Devonian strata, Peace Point area, Wood Buffalo park, Northeast Alberta, 1985, Park D. G. , Jones Brian,

Breccias in mississippi valley-type deposits, 1985, Ohle Ernest L. ,

Mineralization of breccia pipes in northern Arizona, 1985, Wenrich Karen J. ,

Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire, 1986, Cooper Ah,
Underground dissolution of thick gypsum beds in the Edlington Formation and Roxby Formation of the Zechstein sequence in North Yorkshire, England, has resulted in a 3 km-wide and 100 km-long belt of ground susceptible to foundering. Within this belt a large subsidence depression at Snape Mires, near Bedale, was largely filled with lacustrine deposits in the later part of the Late Devensian and during the Flandrian. South of Snape Mires the Nosterfield-Ripon-Bishop Monkton area has suffered about 40 episodes of subsidence in the past 150 years, and the presence of several hundred other subsidence hollows indicates considerable activity from the later part of the Devensian onwards. The linear and grid-like arrangement of these subsidence hollows indicates collapse at intersections in a joint-controlled cave system. Linear subsidence features at Snape Mires are also joint-controlled. The transition from anhydrite at depth to secondary gypsum near surface marks the down-dip limit of the subsidence-prone belt. Cavities are propagated upwards by roof collapse of caverns in the gypsum, leading to the formation of breccia pipes. Choking of the pipes can reduce the surface expression of the underground collapse, but the larger cavities are liable to produce pipes that reach the surface even at the eastern boundary of the 3 km-wide belt described. Further subsidence in the Ripon area is predicted and some suggestions for remedial measures are given

Le karst de Bourgogne, 1988, Delance, J. H.
THE KARST OF BURGONDY (France) - Karst of Burgundy is located between karst of Paris Basin, to which it is connected by its western and northern margins and karst of Jura. The burgundian karst forms an original entity in close relationship with the geological structure of the area, which had defined its distribution and density and the system's amplitudes. Karst of Burgundy develops in calcareous marine formations of Jurassic and Upper Cretaceous (chalk). The karstic landscapes are remarkable by their abundant dry valleys. Caves are characterised by their shallow depths (less than 100m) and the important spreading of the active systems. They can be graded into three types: mesokarstic, holokarstic and cutaneous caves. Deepest and greatest caves (up to 22km) are of holokarstic type. In Burgundy, the majority of caving range from Miocene to Pleistocene; cutaneous caves were only developed during cold phases of Quaternary. Fillings of caves are important, the most interesting fillings are Quaternary bone breccias, rich in paleontological and prehistoric data.

Breccia-hosted lead-zinc deposits in carbonate rocks, 1988, Sangster D. F.

KIMMERIDGIAN TITHONIAN EUSTACY AND ITS IMPRINTS ON CARBONATE ROCKS FROM THE DINARIC AND THE JURA CARBONATE PLATFORMS, 1991, Strohmenger C. , Deville Q. , Fookes E. ,
The Upper Jurassic stratigraphy and the facies development of the Dinaric carbonate platform of Slovenia (northwest Yugoslavia) are compared with the Jura carbonate platform of southern Jura (southeast France). The similar facies development between the two platforms during the Kimmeridgian and the Tithonian, as well as a pronounced discontinuity in the same stratigraphical position (controlled by dasycladacean algae and/or ammonites), made it reasonable to correlate the two regions. This discontinuity is marked by a bauxite horizon and a karst breccia in south Slovenia (inner platform), and by a black-pebble conglomerate (inner platform) and a reef breccia (outer platform) in the southern Jura. These features are interpreted as type 1 sequence boundaries related to a global fall of sea level. In southern Jura, biostratigraphical elements situate the sequence boundary between the Eudoxus and the <> ( = Elegans) zones, most probably at the end of the Beckeri ( = Autissiodorensis) zone. Integrating this discontinuity into the eustatic sea level curve proposed by the Exxon group (version 3.1) is difficult because the only suitable sequence boundaries, SB 139 and SB 142, are respectively too young (younger than the <> zone) or too old (older than the Eudoxus zone). We therefore suggest to introduce a new sequence boundary within the upper part of the Beckeri zone which would correspond to a <> sequence boundary SB 140. The investigations further show that Clypeina jurassica FAVRE and Campbelliella striata (CAROZZI) BERNIER most likely appear in the Beckeri zone in the realm of the Jura carbonate platform. The same dasycladacean algae assemblage defines a cenozone identified as <> in Slovenia. It therefore seems possible to correlate the stratigraphic limit between <> and <> of the Dinaric carbonate platform with the beginning of the Beckeri zone

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

A MIDDLE PROTEROZOIC PALEOKARST UNCONFORMITY AND ASSOCIATED SEDIMENTARY-ROCKS, ELU BASIN, NORTHWEST CANADA, 1991, Pelechaty S. M. , James N. P. , Kerans C. , Grotzinger J. P. ,
A major palaeokarst erosion surface is developed within the middle Proterozoic Elu Basin, northwestern Canada. This palaeokarst is named the sub-Kanuyak unconformity and truncates the Parry Bay Formation, a sequence of shallow-marine dolostones that were deposited within a north-facing carbonate platform under a semi-arid climate. The sub-Kanuyak unconformity exhibits up to 90 m of local relief, and also formed under semi-arid conditions when Parry Bay dolostones were subaerially exposed during a relative sea-level drop of about 180 m. Caves and various karren developed within the meteoric vadose and phreatic zones. Their geometry, size and orientation were largely controlled by northwest- and northeast-trending antecedent joints, bedding, and lithology. Near-surface caves later collapsed forming valleys, and intervening towers or walls, and plains. Minor terra rossa formed on top of highs. Karstification was most pronounced in southern parts of Bathurst Inlet but decreased northward, probably reflecting varying lengths of exposure time along a north-dipping slope. The Kanuyak Formation is up to 65 m thick, and partially covers the underlying palaeokarst. It consists of six lithofacies: (i) breccia formed during collapse of caves, as reworked collapse breccia and regolith; (ii) conglomerate representing gravel-dominated braided-fluvial deposits; (iii) sandstone deposited as braided-fluvial and storm-dominated lacustrine deposits; (iv) interbedded sandstone, siltstone and mudstone of sheet flood origin; (v) dolostones formed from dolocretes and quiet-water lacustrine deposits; and (vi) red-beds representing intertidal-marine mudflat deposits. Rivers flowed toward the northwest and northeast within karst valleys and caves; lakes were also situated within valleys; marine mudflat sediments completely cover the palaeokarst to the north. A regional correlation of the sub-Kanuyak unconformity with the intra-Greenhorn Lakes disconformity within the Coppermine homocline suggests that similar styles of karstification occurred over an extensive region. The Elu Basin palaeokarst, however, was developed more landward, and was exposed for a longer period of time than the Coppermine homocline palaeokarst

Results 1 to 15 of 194
You probably didn't submit anything to search for