Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stream bed is the bottom of a stream covered by water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for brine (Keyword) returned 57 results for the whole karstbase:
Showing 1 to 15 of 57
Identification of the origin of oreforming solutions by the use of stable isotopes, 1977, Sheppard S. M. F. ,
SynopsisThe four major different types of water -- magmatic, metamorphic, sea water and/or connate, and meteoric water -- have characteristic hydrogen (D/H) and oxygen (18O/16O) isotope ratios. Applied to the analysis of isotopic data on hydrothermal minerals, fluid inclusions and waters from active geothermal systems, these ratios indicate that waters of several origins are involved with ore deposition in the volcanic and epizonal intrusive environment. Water of a single origin dominates main-stage mineralization in some deposits: magmatic -- Casapalca, Peru (Ag-Pb-Zn-Cu); meteoric -- Butte, Montana (Cu-Zn-Mn), epithermal deposits, e.g. Goldfield, Tonopah, Nevada (Ag-Au), Pachuca, Mexico (Ag-Au), San Juan Mountains District, Colorado (Ag-Au-Pb-Zn); sea water -- Troodos, Cyprus (Fe-Cu), Kuroko, Japan (Fe-Cu-Pb-Zn). Solutions of more than one origin are important in certain deposits (magmatic and meteoric -- porphyry copper and molybdenum deposits) and are present in many. In the porphyry Cu-Mo deposits the initial major ore transportation and alteration processes (K-feldspar-biotite alteration) are magmatic-hydrothermal events that occur at 750-500{degrees}C. These fluids are typically highly saline Na-K-Ca-Cl-rich brines (more than 15 wt % equivalent NaCl). The convecting meteoric-hydrothermal system that develops in the surrounding country rocks with relatively low integrated water/rock ratios (less than 0.5 atom % oxygen) subsequently collapses in on a waning magmatic-hydrothermal system at about 350-200{degrees}C. These fluids generally have moderate to low salinities (less than 15 wt % equivalent NaCl). Differences among these deposits are probably in part related to variations in the relative importance of the meteoric-hydrothermal versus the magmatic-hydrothermal events. The sulphur comes from the intrusion and possibly also from the country rocks. Deposits in which meteoric or sea water is the dominant constituent of the hydrothermal fluids come from epizonal intrusive and sub-oceanic environments where the volcanic country rocks are fractured or well jointed and highly permeable. Integrated water/rock ratios are typically high, with minimum values of 0.5 or higher (atom % oxygen) -- the magmatic water contribution is often drowned out'. Salinities are low to very low (less than 10 wt % equivalent NaCl), and temperatures are usually in the range 350-150{degrees}C. The intrusion supplies the energy to drive the large-scale convective circulation system. The sulphur comes from the intrusion, the country rocks and/or the sea water. Argillic alteration, which occurs to depths of several hundred metres, generated during supergene weathering in many of these deposits is isotopically distinguishable from hydrothermal clays

Dissolution of salt deposits by brine density flow, 1980, Anderson R. Y. , Kirkland D. W

Lithification of peritidal carbonates by continental brines at Fisherman Bay, South Australia, to form a megapolygon/spelean limestone association, 1982, Ferguson J, Burne Rv, Chambers La,
Lithification, which commenced less than 3000 yrs BP is still active, and has formed a cavernous limestone containing megapolygons, tepees, and speleothems including pisoliths, floe aragonite, and aragonite pool deposits. The emerging waters evolved from low alkalinity waters of Pleistocene sand and clay coastal plain aquifers which passed through an underlying Tertiare marine carbonate aquifer, have high P CO2 , total carbonate, Ca, and sulfate concentrations. They are close to saturation with respect to aragonite, and their mMg (super 2) /mCa (super 2) ratios approach or exceed the critical aragonite precipitation value. Features which diagnose ancient examples of this process: primary aragonitic cements with high mSr (super 2) /mCa (super 2) values; nonmarine delta 34 S values in gypsum; two superimposed networks of surface polygons, one delineated by extensional boundaries, the other by tepees; high-water vadose-zone isopachous grain cements; interconnected, speleothem-lined cavities; and the presence of evaporites only in surface sediments. Possible ancient examples are recognized in West Texas, Lombardy, and the Atlas Mountains. The areal extent of each of these deposits suggests that the process may be a geologically important feature, and its products may be diagnostic of semi-arid or arid-zone paralic sedimentation.--Modified journal abstract

Regional dolomitization of subtidal shelf carbonates: Burlington and Keokuk Formations (Mississippian), Iowa and Illinois, 1987, Harris David C. , Meyers William J. ,
Cathodoluminescent petrography of crinoidal limestones and dolomites from the Mississippian (Osagean) Burlington and Keokuk Formations in Iowa and Illinois has revealed a complex diagenetic history of calcite cementation, dolomitization, chertification and compaction. Dolomite occurs abundantly in subtidal, open-marine facies throughout the study area. Three luminescently and chemically distinct generations of dolomite can be recognized regionally. Dolomite I, the oldest generation, is luminescent, thinly zoned, and occurs mainly as a replacement of lime mud. Dolomite II has dull red unzoned luminescence, and occurs mainly as a replacement of dolomite I rhombs. Dolomite III is non-luminescent, and occurs as a syntaxial cement on, and replacement of, older dolomite I and II rhombs. Petrography of these dolomite generations, integrating calcite cement stratigraphy, chertification and compaction histories has established the diagenetic sequence. Dolomites I and II pre-date all calcite cements, most chert, intergranular compaction and styloites. Dolomite III precipitation occurred within the calcite cement sequence, after all chert, and after at least some stylolitization. The stratigraphic limit of these dolomites to rocks older than the St Louis Limestone (Meramecian) suggests that dolomitization took place before or during a regional mid-Meramecian subaerial unconformity. A single dolomitization model cannot reasonably explain all three generations of dolomite in the Burlington and Keokuk limestones. Petrographic and geochemical characteristics coupled with timing constraints suggest that dolomite I formed in a sea water-fresh water mixing zone associated with a meteoric groundwater system established beneath the pre-St Louis unconformity. Dolomite II and III may have formed from externally sourced warm brines that replaced precursor dolomite at shallow burial depths. These models therefore suggest that the required Mg for dolomite I was derived mainly from sea water, whereas that for dolomites II and III was derived mainly from precursor Burlington--Keokuk dolomites through replacement or pressure solution

Subsidence associated with the abstraction of fluids, 1988, Bell Fg,
Subsidence of the ground surface due to the withdrawal of groundwater, oil, gas or brine from sedimentary deposits has ccurred in many parts of the world. The abstraction of groundwater has been the principal cause of subsidence, primarily because more groundwater is abstracted than all the other liquids put together. Subsidences of several metres have been recorded, for example, in California due to the exploitation of oil, as well as groundwater. Such ground movements represent a notable problem in engineering geology. Generally these subsidences take place slowly but the occurrence at the surface of sinkholes as a result of water tables being lowered in limestone terrains is a rapid process. In the case of groundwater, gas or oil abstraction the reduction in pore pressure in the voids due to the decline in head leads to an increase in effective load on the sediments concerned, bringing about consolidation, which is reflected at the surface as subsidence. On the other hand when mineral deposits are worked by solution mining the rock material itself is removed which, if uncontrolled, resultsin subsidence. The removal of fluids from sediments frequently has resulted in the formation of fissures at the surface. Indeed there are cases on record where faults are alleged to have been formed. Such fissures often occur around the periphery of the subsidence trough

Strontium isotopic geochemistry of mississippi valley-type deposits, East Tennessee; implications for age and source of mineralizing brines, 1988, Kesler Stephen E. , Jones Lois M. , Ruiz Joaquin,

DIAGENESIS AND MINERALIZATION PROCESSES IN DEVONIAN CARBONATE ROCKS OF THE SIDING-GUDAN LEAD-ZINC MINERAL SUBDISTRICT, GUANGXI, SOUTHWEST CHINA, 1991, Schneider W. , Geng A. Q. , Liu X. Z. ,
The lead-zinc ore deposits of the Siding-Gudan mineral subdistrict Guangxi are part of the large Nanling district of South China, and hosted in Devonian carbonate rocks. The ore bodies occur significantly along main faults and fault zones, and concentrate up to 300 meters above the Cambrian/Devonian unconformity. Connected with hydrothermal karst, size and volume of the ore bodies increase in proximity to this unconformity. Moving from the unaffected host rocks to the center of the ore bodies, four zones can be discriminated by the mineral assemblage (pyrite, sphalerite, galena) as well as by the degree of ordering, Ca/Mg, and Fe/Mn ratios of different dolomites. Homogenization temperatures range from 80-100-degrees-C (Presqu'ile dolomite) to 230-260-degrees-C (massive sphalerite). The sulfides reveal delta-S-34 = -20 to parts per thousand, and fluid inclusions display a salinity of 5-12 wt % equivalent NaCl. The diagenetic and hydrothermal history is similar to that of classic Mississippi Valley Type (MVT) sulfide mineral deposits as, for example, Pine Point in Canada. Mineralization and remobilization of the sulfides took place during a wide time span from late Paleozoic through Mesozoic. Both processes are considered as an interaction of saline basinal brines ascended from the adjoining dewatering trough, and magmatic-hydrothermal fluids of several magmatic-tectonic events

HALITE SALTERN IN THE CANNING BASIN, WESTERN-AUSTRALIA - A SEDIMENTOLOGICAL ANALYSIS OF DRILL CORE FROM THE ORDOVICIAN-SILURIAN MALLOWA SALT, 1992, Cathro Dl, Warren Jk, Williams Ge,
The Late Ordovician-Early Silurian Mallowa Salt of the Carribuddy Group, Canning Basin, north-west Australia, is the largest halite deposit known in Australia, attaining thicknesses of 800 m or more within an area of approximately 200 000 km2. Study of 675 m of drill core from BHP-Utah Minerals' Brooke No. 1 well in the Willara Sub-basin indicates that the Mallowa Salt accumulated within a saltern (dominantly subaqueous evaporite water body) that was subject to recurrent freshening, desiccation and exposure. Textures and bromine signatures imply a shallow water to ephemeral hypersaline environment typified by increasing salinity and shallowing into evaporitic mudflat conditions toward the top of halite-mudstone cycles (Type 2) and the less common dolomite/anhydrite-halite-mudstone cycles (Type 1). The borate mineral priceite occurs in the capping mudstones of some cycles, reinforcing the idea of an increasing continental influence toward the top of mudstone-capped halite cycles. The rock salt in both Type 1 and Type 2 cycles typically comprises a mosaic of large, randomly orientated, interlocking halite crystals that formed during early diagenesis. It only partially preserves a primary sedimentary fabric of vertically elongate crystals, some with remnant aligned chevrons. Intraformational hiati, halite karst tubes and solution pits attest to episodic dissolution. Stacked Type 2 cycles dominate; occasional major recharges of less saline, perhaps marine, waters in the same area produced Type 1 cycles. The envisaged saltern conditions were comparable in many ways to those prevailing during the deposition of halite cycles of the Permian Salado Formation in New Mexico and the Permian San Andres Formation of the Palo Duro Basin area in Texas. However, in the Canning Basin the cycles are characterized by a much lower proportion of anhydrite, implying perhaps a greater degree of continental restriction to the basin. The moderately high level of bromine in the Mallowa Salt (156.5 43.5 ppm Br for primary halite, 146.1 54.7 ppm Br for secondary halite) accords with evolved continental brines, although highly evaporative minerals such as polyhalite and magnesite are absent. The bromine levels suggest little or no dissolution/reprecipitation of primary halite and yet, paradoxically, there is little preservation of the primary depositional fabric. The preservation of early halite cements and replacement textures supports the idea of an early shutdown of brine flow paths, probably at burial depths of no more than a few metres, and the resultant preservation of primary bromine values in the secondary halite

DISLOCATION OF THE EVAPORITIC FORMATIONS UNDER TECTONIC AND DISSOLUTION CONTROLS - THE MODEL OF THE DINANTIAN EVAPORITES FROM VARISCAN AREA (NORTHERN FRANCE AND BELGIUM), 1993, Rouchy J. M. , Groessens E. , Laumondais A. ,
Within the Franco-Belgian segment of the Hercynian orogen, two thick Dinantian anhydritic formations are known, respectively in the Saint-Ghislain (765 m) and Epinoy 1 (904 m) wells. Nevertheless, occurrences of widespread extended breccias and of numerous pseudomorphs of gypsum/anhydrite in stratigraphically equivalent carbonate deposits (boreholes and outcrops), suggest a larger extent of the evaporitic conditions (fig. 1, 2). The present distribution of evaporites is controlled by palaeogeographical differentiation and post-depositional parameters such as tectonics and dissolution. These latter have dissected the deposits formerly present in all the structural units. By using depositional, diagenetic and deformational characters of these formations, the article provides a model for the reconstruction of a dislocated evaporitic basin. This segment of the Hercynian chain is schematically composed of two main units (fig. 1, 3) : (1) the autochthonous or parautochthonous deposits of the Namur synclinorium, (2) the Dinant nappe thrusted northward over the synclinorium of Namur. The major thrust surface is underlined by a complex fault bundle (faille du Midi) seismically recognized over more than 100 km. A complex system of thrust slices occurs at the Hercynian front. Except for local Cretaceous deposits, most of the studied area has been submitted to a long period of denudation since the Permian. Sedimentary, faunistic and geochemical data argue for a marine origin of the brines which have generated the evaporites interbedded with marine limestones. Sedimentary structures. - The thick evaporitic formations are composed of calcium-sulfates without any clear evidence of the former presence of more soluble salts (with the exception of a possible carbonate-sulfate breccia in the upper part of the Saint-Ghislain formation). As in all the deeply buried evaporitic formations, the anhydrite is the main sulfate component which displays all the usual facies : pseudomorphs after gypsum (fig. 4A, B), nodular and mosaic (fig. 4C), laminated. The gypsum was probably an important component during the depositional phase despite the predominant nodular pattern of the anhydrite. Early diagenetic nodular anhydrite may have grown during temporary emersion of the carbonates (sabkha environments), but this mechanism cannot explain the formation of the whole anhydrite. So, most of the anhydrite structures result from burial-controlled gypsum --> anhydrite conversion and from mechanical deformations. Moreover, a complex set of diagenetic processes leads to various authigenic minerals (celestite, fluorite, albite, native sulfur, quartz and fibrous silica) and to multistaged carbonate <> sulfate replacements (calcite and dolomite after sulfate, replacive anhydrite as idiomorphic poeciloblasts, veinlets, domino-like or stairstep monocrystals...). These mineral transformations observed ill boreholes and in outcrops have diversely been controlled during the complex evolution of the series as : depositional and diagenetic pore-fluid composition, pressure and temperature changes with burial, bacterial and thermochemical sulfate reduction, deep circulations favored by mechanical brecciation, mechanical stresses, role of groundwater during exhumation of the series. Deformational structures. - A great variety of deformational structures as rotational elongation, stretching, lamination, isoclinal microfolding, augen-like and mylonitic structures are generated by compressive tectonic stresses (fig. 4D to J). The similarities between tectonic-generated structures and sedimentary (lamination) or diagenetic (pseudo-nodules) features could lead lo misinterpretations. The calcareous interbeds have undergone brittle deformation the style and the importance of which depend of their relative thickness. Stretching, boudins, microfolds and augen structures F, H. I) affect the thin layers while thicker beds may be broken as large fractured blocks dragged within flown anhydrite leading to a mylonitic-like structure (fig, 4G). In such an inhomogeneous formation made of interlayered ductile (anhydrite) and brittle (carbonate) beds, the style and the intensity of the deformation vary with respect to the relative thickness of each of these components. Such deformational features of anhydrite may have an ubiquitous significance and can result either from compressive constraints or geostatic movements (halokinesis). Nevertheless, some data evidence a relation with regional tangential stresses: (1) increase of the deformation toward the bottom of the Saint-Ghislain Formation which is marked by a deep karst suggesting the presence of a mechanical discontinuity used as a drain for dissolving solutions (fig. 3, 4); (2) structural setting (reversed series, internal slidings) of the Epinoy 1 formation under the Midi thrust. However, tectonic stresses also induce flowing deformations which have contributed to cause their present discontinuity. It can be assumed that the evaporites played an active role for the buckling of the regional structure as detachment or gliding layers and more specifically for the genesis of duplex structures. Breccia genesis. - Great breccia horizons are widely distributed in outcrops as well as in the subsurface throughout the greater part of the Dinant and Namur units (fig. 2). The wide distribution of pseudomorphosed sulfates in outcrops and the stratigraphical correlation between breccia and Saint-Ghislain evaporitic masses (fig. 2) suggest that some breccia (although not all) have been originated from collapse after evaporites solution. Although some breccia may result from synsedimentary dissolution, studied occurrences show that most of dissolution processes started after the Hercynian deformation and, in some cases, were active until recently : elements made of lithified and fractured limestones (Llandelies quarries) (fig. 5A), preservation of pseudomorphs of late replacive anhydrite (Yves-Gomezee) (fig. 5B, C), deep karst associated with breccia (Douvrain, Saint Ghislain, Ghlin boreholes) (fig. 3, 4, 5D)). Locally, the final brecciation may have been favored by a mechanical fragmentation which controlled water circulations (fig. 5E). As postulated by De Magnee et al. [19861, the dissolution started mostly after the Permian denudation and continued until now in relation with deep circulations and surface weathering (fig. 6). So, the above-mentioned occurrences of the breccia are logically explained by collapse after dissolution of calcium-sulfates interbeds of significant thickness (the presence of salt is not yet demonstrated), but other Visean breccia may have a different origin (fig. 5F). So, these data prove the extension of thick evaporitic beds in all the structural units including the Dinant nappe, before dissolution and deformation. Implications. - Distribution of Visean evaporites in northern France and Belgium is inherited from a complicated paleogeographic, tectonic and post-tectonic history which has strongly modified their former facies, thicknesses and limits (fig. IA, 6). Diversified environments of deposition controlled by both a palaeogeographical differentiation and water level fluctuations led to the deposition of subaqueous (gypsum) or interstitial (gypsum, anhydrite) crystallization. Nevertheless, most of the anhydrite structures can be interpreted as resulting from burial conversion of gypsum to anhydrite rather than a generalized early diagenesis in sabkha-like conditions. Deformation of anhydrite caused by Hercynian tangential stresses and subsequent flow mechanisms, have completed the destruction of depositional and diagenetic features. The tectonic deformations allow us to consider the role of the evaporites in the Hercynian deformations. The evaporites supplied detachment and gliding planes as suggested for the base of the Saint-Ghislain Formation and demonstrated by the structural setting of Epinoy 1 evaporites in reverse position and in a multi-system of thrust-slices below the Midi overthrust (fig. 7). So, although the area in which evaporation and precipitation took place cannot be exactly delineated in geographic extent, all the data evidence that the isolated thick anhydritic deposits represent relics of more widespread evaporites extending more or less throughout the different structural units of this Hercynian segment (fig. 1B). Their present discontinuity results from the combination of a depositional differentiation, mechanical deformations and/or dissolution

RELATION OF MINERALIZATION TO WALL-ROCK ALTERATION AND BRECCIATION, MASCOT JEFFERSON-CITY MISSISSIPPI-VALLEY-TYPE DISTRICT, TENNESSEE, 1994, Haynes F. M. , Keslr S. E. ,
This study was undertaken to assess the relation of Mississippi Valley-type mineralization to wall-rock alteration and brecciation in the Mascot-Jefferson City district, the largest part of the East Tennessee Mississippi Valley-type ore field. The main question of interest was whether the Mississippi Valley-type-forming brines created or greatly enlarged the breccia system that hosts the ore or whether the breccia system was a preexisting paleoaquifer that simply controlled movement of the mineralizing brines. A secondary, and closely related, question was whether brine-wall rock interaction deposited Mississippi Valley-type ore. The breccia system that hosts the East Tennessee ore field began as karst breccias which formed in the upper part of the Late Cambrian-Early Ordovician Knox Group during Middle Ordovician emergence. Brecciation, which was most common at the paleosurface and in a limestone-rich zone about 200 m below the surface, took place when limestone solution caused collapse of primary dolostone layers. Mississippi Valley-type mineralization, consisting of sphalerite and sparry dolomite, fills interstices in the breccias that formed in the limestone-rich part of the Knox Group. Ore is associated with ''recrystalline dolomite'' that replaced limestone and there is an inverse correlation between the original limestone and sphalerite abundance suggesting that the ore-forming fluids reacted strongly with limestone wall rock, possibly dissolving it where alteration was most intense. The assessment of a relation between alteration and Mississippi Valley-type mineralization was based on 3,533 surface drill holes covering the 110-km2 Mascot-Jefferson City district, each of which provided stratigraphic data and quantified estimates of mineralization intensity and alteration intensity. These data show clearly that as much as 50 percent of the limestone in the mineralized breccia section was lost over enormous areas that extend far beyond significant mineralization. The intensity of this effect clearly decreases downdip (toward the east), away from the probable source of meteoric karst-forming waters. These relations, combined with isotopic analyses and reaction path calculations, suggest that breccia formation and limestone dissolution took place during the original karst breccia formation. In contrast, later Mississippi Valley-type mineralization was associated with replacement of limestone by recrystalline dolomite. The main effect of dolomitization on the chemistry of the Mississippi Valley-type brines, an increase in their Ca/Mg ratio, would not cause sulfide precipitation. Thus, it appears unlikely that Mississippi Valley-type-forming brines created much of their ore-hosting breccias or that water-rock interaction was a major cause of Mississippi Valley-type ore deposition

CHEMICAL-REACTION PATH MODELING OF ORE DEPOSITION IN MISSISSIPPI VALLEY-TYPE PB-ZN DEPOSITS OF THE OZARK REGION UNITED-STATES MIDCONTINENT, 1994, Plumlee G. S. , Leach D. L. , Hofstra A. H. , Landis G. P. , Rowan E. L. , Viets J. G. ,
The Ozark region of the U.S. midcontinent is host to a number of Mississippi Valley-type districts, including the world-class Viburnum Trend, Old Lead Belt, and Tri-State districts and the smaller Southeast Missouri barite, Northern Arkansas, and Central Missouri districts. There is increasing evidence that the Ozark Mississippi Valley-type districts formed locally within a large, interconnected hydrothermal system that also produced broad fringing areas of trace mineralization, extensive subtle hydrothermal alteration, broad thermal anomalies, and regional deposition of hydrothermal dolomite cement. The fluid drive was provided by gravity flow accompanying uplift of foreland thrust belts during the Late Pennsylvanian to Early Permian Ouachita orogeny. In this study, we use chemical speciation and reaction path calculations, based on quantitative chemical analyses of fluid inclusions, to constrain likely hydrothermal brine compositions and to determine which precipitation mechanisms are consistent with the hydrothermal mineral assemblages observed regionally and locally within each Mississippi Valley-type district in the Ozark region. Deposition of the regional hydrothermal dolomite cement with trace sulfides likely occurred in response to near-isothermal effervescence of CO2 from basinal brines as they migrated to shallower crustal levels and lower confining pressures. In contrast, our calculations indicate that no one depositional process can reproduce the mineral assemblages and proportions of minerals observed in each Ozark ore district; rather, individual districts require specific depositional mechanisms that reflect the local host-rock composition, structural setting, and hydrology. Both the Northern Arkansas and Tri-State districts are localized by normal faults that likely allowed brines to rise from deeper Cambrian-Ordovician dolostone aquifers into shallower carbonate sequences dominated by limestones. In the Northern Arkansas district, jasperoid preferentially replaced limestones in the mixed dolostone-limestone sedimentary packages. Modeling results indicate that the ore and alteration assemblages in the Tri-State and Northern Arkansas districts resulted from the flow of initially dolomite-saturated brines into cooler limestones. Adjacent to fluid conduits where water/rock ratios were the highest, the limestone was replaced by dolomite. As the fluids moved outward into cooler limestone, jasperoid and sulfide replaced limestone. Isothermal boiling of the ore fluids may have produced open-space filling of hydrothermal dolomite with minor sulfides in breccia and fault zones. Local mixing of the regional brine with locally derived sulfur undoubtedly played a role in the development of sulfide-rich ore runs. Sulfide ores of the Central Missouri district are largely open-space filling of sphalerite plus minor galena in dolostone karst features localized along a broad anticline. Hydrothermal solution collapse during ore deposition was a minor process, indicating dolomite was slightly undersaturated during ore deposition. No silicification and only minor hydrothermal dolomite is present in the ore deposits. The reaction path that best explains the features of the Central Missouri sulfide deposits is the near-isothermal mixing of two dolomite-saturated fluids with different H2S and metal contents. Paleokarst features may have allowed the regional brine to rise stratigraphically and mix with locally derived, H2S-rich fluids

MICROBIOLOGICAL ACTIVITY IN THERMOGLACIAL KARST SPRINGS, SOUTH SPITSBERGEN, 1994, Lauritzen S. E. , Bottrell S. ,
Along the Hornsund fault zone, South Spitsbergen (76-degrees-60'N), thermokarstic springs smell of H2S and display either growth of, or eject fragments of, organic slime. The temperature in individual springs varies between 4 and 15-degrees-C. Their rate of discharge is approximately 1 L s-1 to 18 m3 s-1, corresponding to a minimum temperature of 30-degrees-C within the base of the aquifer. The water, which contains a few ppm SO4(2-), 0.5 ppm S2-, and several thousand ppm NaCl, appears to be a mixture of turbid glacial meltwater and hot brine. Water chemistry and stable isotopes indicate that the salinity is not the result of simple dilution of modern seawater from the brackish zone beneath the coastal karst aquifer, but rather originates from a deep thermal brine component where concentrations and isotopic composition of various species are controlled by water-rock interaction in the source area of the brine. A value of DELTAdeltaS-34 of up to about 30 parts per thousand indicates that sulfide is a bioreduction product of sulfate. Scanning electron microscope (SEM) studies revealed bacteria and fungal hypha in the organic slime, and larger spherical particles (approximately 3.8 mum diameter) that display high concentrations of Fe and S. These findings demonstrate the presence of sulfate-reducing bacteria within the subpermafrost aquifer

THE EARLY PROTEROZOIC MISSISSIPPI VALLEY-TYPE PB-ZN-F DEPOSITS OF THE CAMPBELLRAND AND MALMANI SUBGROUPS, SOUTH-AFRICA - A REVIEW, 1995, Martini J. E. J. , Eriksson P. G. , Snyman C. P. ,
Pb-Zn-F deposits occur in the very late Archaean (2.55 Ga) shallow marine dolostone of the relatively undeformed Campbellrand and Malmani Sub-groups, which are overlain unconformably by the lower Proterozoic Postmasburg and Pretoria Group siliciclastics. They consist of stratiform deposits formed by replacement and porosity-filling, as well as pipes, ring-shaped and irregular bodies associated with collapse breccia. In the Transvaal basin the latter were generated during the karst denudation period between the deposition of the Chuniespoort Group (ending at similar to 2.4 Ga) and of the Pretoria Group (starting at 2.35 Ga). A part of these mineralisations were overprinted by the metamorphism of the Bushveld Complex intrusion at 2.06 Ga. In the Transvaal basin, the age of the mineralisation is constrained between the start of the Pretoria Group deposition and the Bushveld intrusion. It is concluded that, although most of the mineralisations are characteristic of the Mississippi Valley-type, some of the northernmost occurrences, rich in siderite, are less typical. A classic genetic model is proposed. In an environment characterised by tensional tectonics and basin development, brines of basinal origin were heated by circulation into pre-Chuniespoort rocks, leached metals from the rocks they permeated, and rose as hydrothermal plumes. At relatively shallow depth they deposited minerals after mixing with water of surficial origin

Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996, Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

Lechuguilla Cave Pool Chemistry, 1986-1999, 2000, Turin, H. J. , Plummer, M. A.
In May 1986, cavers dug into Lechuguilla Cave, in southeastern New Mexico, USA. Subsequent exploration and research have demonstrated that Lechuguilla is a world-class cave, both in size and in speleological importance. Of particular interest to hydrologists and geochemists are the numerous isolated pools throughout much of the cave. Since 1986, close to 200 water samples have been collected and subjected to over 2000 individual analyses. Results of these analyses are collected and published here for the first time. Dominant cations in the pool waters are calcium and magnesium; dominant anions are bicarbonate and sulfate. These characteristics reflect the limestone/dolomite host bedrock of the cave, modified to varying degrees by the caves massive gypsum deposits, associated with the caves early development. The overall chemistry of the water can be explained by a small number of geochemical processes, starting with evaporation and concentration of local rainfall, and dissolution of soil CO2 and local bedrock. Within the cave, excess CO2 is degassed, leading to precipitation of CaCO3 and increased Mg2+:Ca2+ ratios. In some areas of the cave, infiltrating water encounters and dissolves gypsum, leading to increased CaCO3 precipitation and increased SO42-:HCO3- ratios. In at least one location, massive evaporation has created a magnesium sulfate brine. Geochemical characteristics seem to confirm that the pool located at Lechuguillas current deep point is actually the regional aquifer, suggesting that the caves maximum air-filled depth has been reached.

Results 1 to 15 of 57
You probably didn't submit anything to search for