Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That invasion is in geophysical well logging, the penetration of a fluid into the porous medium [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for bryophytes (Keyword) returned 5 results for the whole karstbase:
Ecological studies in the Mamoth Cave System of Kentucky. I. The Biota., 1968, Barr Thomas C.
The Mammoth Cave system includes more than 175 kilometers of explored passages in Mammoth Cave National Park, Kentucky. Although biologists have explored the caves intermittently since 1822, the inventory of living organisms in the system is still incomplete. The present study lists approximately 200 species of animals, 67 species of algae, 27 species of fungi, and 7 species of twilight-zone bryophytes. The fauna is composed of 22% troglobites, 36% troglophiles, 22% trogloxenes, and 20% accidentals, and includes protozoans, sponges, triclads, nematodes, nematomorphs, rotifers, oligochaetes, gastropods, cladocerans, copepods, ostracods, isopods, amphipods, decapods, pseudoscorpions, opilionids, spiders, mites and ticks, tardigrades, millipedes, centipedes, collembolans, diplurans, thysanurans, cave crickets, hemipterans, psocids, moths, flies, fleas, beetles, fishes, amphibians, birds, and mammals. The Mammoth Cave community has evolved throughout the Pleistocene concomitantly with development of the cave system. The troglobitic fauna is derived from 4 sources: (1) troglobite speciation in situ in the system itself; (2) dispersal along a north Pennyroyal plateau corridor; (3) dispersal along a south Pennyroyal plateau corridor; and (4) dispersal across the southwest slope of the Cumberland saddle merokarst.

Ecological studies in the Mamoth Cave System of Kentucky. I. The Biota., 1968, Barr Thomas C.
The Mammoth Cave system includes more than 175 kilometers of explored passages in Mammoth Cave National Park, Kentucky. Although biologists have explored the caves intermittently since 1822, the inventory of living organisms in the system is still incomplete. The present study lists approximately 200 species of animals, 67 species of algae, 27 species of fungi, and 7 species of twilight-zone bryophytes. The fauna is composed of 22% troglobites, 36% troglophiles, 22% trogloxenes, and 20% accidentals, and includes protozoans, sponges, triclads, nematodes, nematomorphs, rotifers, oligochaetes, gastropods, cladocerans, copepods, ostracods, isopods, amphipods, decapods, pseudoscorpions, opilionids, spiders, mites and ticks, tardigrades, millipedes, centipedes, collembolans, diplurans, thysanurans, cave crickets, hemipterans, psocids, moths, flies, fleas, beetles, fishes, amphibians, birds, and mammals. The Mammoth Cave community has evolved throughout the Pleistocene concomitantly with development of the cave system. The troglobitic fauna is derived from 4 sources: (1) troglobite speciation in situ in the system itself; (2) dispersal along a north Pennyroyal plateau corridor; (3) dispersal along a south Pennyroyal plateau corridor; and (4) dispersal across the southwest slope of the Cumberland saddle merokarst.

Abstract: Distribution of Bryophites on limestones in Eastern Australia IN: Proceedings of the Wombeyan Karst Workshop November 19-22, 1993 , 1993, Downing, A. J.

Comparisons of bryophytes on limestone and nonlimestone substrates at Jenolan Caves, London Bridge, and Attunga.


The distribution of plants in Scoska Cave, North Yorkshire, and their relationship to light intensity, 2001, Pentecost Allan, Zhaohui Zhang
The flora of a small limestone cave was investigated. A total of 59 species was recorded (4 algae, 3 lichens, 47 bryophytes, 4 ferns, 1 angiosperm) making it bryologically the richest cave in Britain and one of the richest in Europe. All but nine of the species had been recorded from other European caves. Species-richness declined irregullarly from the entrance (relative irradiance with respect to open sky 12%) to 34m depth (rel. irradiance 0.004%). Bryophytes were found at 0-16m depth where relative irradiance declined to 0.2% and only algae were encountered at 34m depth. While irradiance, which declined exponentially, was the major factor controlling plant distribution, substratum characteristics and surface moisture were also important.

Flora of a small lava cave near Laki, Iceland, 2012, Pentecost, Allan

Twenty nine phototrophic taxa are reported from a small volcanic cave. These included five cyanobacteria, two of which are heterocystous nitrogen-fixers, and nine diatoms, several of which have previously been reported from caves. Of the five lichen taxa, two are foliose nitrogen-fixers, suggesting that combined nitrogen was in short supply. The aerophytic flora show similarities with communities from limestone caves suggesting that low light and high humidity are of overriding importance for some taxa.


Results 1 to 5 of 5
You probably didn't submit anything to search for