Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That biphosphammite is a cave mineral - nh4h2po4 [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for calcite precipitation (Keyword) returned 60 results for the whole karstbase:
Showing 1 to 15 of 60
Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records, , Baldini Jul, Mcdermott F, Fairchild Ij,
The identification of vadose zone hydrological pathways that most accurately transmit climate signals through karst aquifers to stalagmites is critical for accurately interpreting climate proxies contained within individual stalagmites. A three-year cave drip hydrochemical study across a spectrum of drip types in Crag Cave, SW Ireland, reveals substantial variability in drip hydrochemical behaviour. Stalagmites fed by very slow drips ( 2[no-break space]ml/min) sites, apparently unconnected with local meteorological events. Water from these drips was typically undersaturated with respect to calcite, and thus did not result in calcite deposition. Data presented here suggest that drips in this flow regime also experience flow re-routing and blocking, and that any stalagmites developed under such drips are unsuitable as mid- to high-resolution paleoclimate proxies. Most drip sites demonstrated seasonal [Ca2] and [Mg2] variability that was probably linked to water excess. Prior calcite precipitation along the flowpath affected the chemistry of slowly dripping sites, while dilution predominantly controlled the water chemistry of the more rapidly dripping sites. This research underscores the importance of understanding drip hydrology prior to selecting stalagmites for paleoclimate analysis and before interpreting any subsequent proxy data

GEOCHEMICALLY CONTROLLED CALCITE PRECIPITATION BY CO2 OUTGASSING - FIELD-MEASUREMENTS OF PRECIPITATION RATES IN COMPARISON TO THEORETICAL PREDICTIONS, 1992, Dreybrodt W, Buhmann D, Michaelis J, Usdowski E,

Recent flowstone growth rates: field measurements and comparison to theoretical results, 1995, Baker A. , Smart Pl. ,
The model of calcite precipitation kinetics of D. Buhmann and W. Dreybrodt, based on the rate laws of L.N. Plummer et al., is used to predict cave flowstone growth rates. These theoretically modelled growth rates are compared to actual growth rates of recent samples found in cave and mine sites in southwest England. A good agreement is found between modelled and actual growth rates within the 95% confidence level of the determinations, although in general modelled growth rates overestimate actual growth rate by between 2.4 and 4.7 times. Several reasons for this overestimation are discussed, including uncertainties arising from the experimental data of L.N. Plummer et al., seasonal shut-off of water flow onto the flowstones and significant variations in the growth rate determining parameters during the period of flowstone growth. For one flowstone an underestimation of growth rate is observed and is explained by the presence of rimstone pools which pond water on the sample surface

IMPACT OF AN EXCEPTIONAL STORM EPISODE ON THE FUNCTIONING OF KARST SYSTEM - THE CASE OF THE 22/9/92 STORM AT VAISON-LA-ROMAINE (VAUCLUSE, FRANCE), 1995, Lastennet R. , Mudry J. ,
Karstification is a slow geodynamical process, controlled by the interaction between dissolution kinetics and flow dynamics. Moreover, mechanisms of network clogging by calcite precipitation or non-soluble clay accumulation are slow and continuous phenomena. This evolution of a karst system can be widely modified during exceptional rainfall episodes, such as the 22/09/92 storm (> 300 mm) near Vaison-la-Romaine. Such an impulse can modify the hydraulical behaviour of a massif, by unclogging the outlets of the saturated zone or the drainage network of the aquifer, and change hydrodynamical features of a spring (storage capacity etc.). This phenomenon has been demonstrated in a north Vaucluse karst aquifer whose recession coefficient has increased 7-fold and stored volume divided by 6

HYDRODYNAMIC CONTROL OF INORGANIC CALCITE PRECIPITATION IN HUANGLONG RAVINE, CHINA - FIELD-MEASUREMENTS AND THEORETICAL PREDICTION OF DEPOSITION RATES, 1995, Liu Z. H. , Svensson U. , Dreybrodt W. , Yuan D. X. , Buhmann D. ,
Hydrochemical and hydrodynamical investigations are presented to explain tufa deposition rates along the flow path of the Huanglong Ravine, located in northwestern Sichuan province, China, on an altitude of about 3400 m asl. Due to outgassing of CO2 the mainly spring-fed stream exhibits, along a valley of 3.5 km, calcite precipitation rates up to a few mm/year. We have carried out in situ experiments to measure calcite deposition rates at rimstone dams, inside of pools and in the stream-bed. Simultaneously, the downstream evolution of water chemistry was investigated at nine locations with respect to Ca2 Mg2, Na, Cl-, SO42-, and alkalinity. Temperature, pH, and conductivity were measured in situ, while total hardness, Ca-T, and alkalinity have been determined immediately after sampling, performing standard titration methods. The water turned out to be of an almost pure Ca-Mg-HCO3 type. The degassing of CO2 causes high supersaturation with respect to calcite and due to calcite precipitation the Ca2 concentration decreases from 6 . 10(-3) mole/l upstream down to 2.5 . 10(-3) mole/l at the lower course. Small rectangular shaped tablets of pure marble were mounted under different flow regimes, i.e., at the dam sites with fast water flow as well as inside pools with still water. After the substrate samples had stayed in the water for a period of a few days, the deposition rates were measured by weight increase, up to several tens of milligrams. Although there were no differences in hydrochemistry, deposition rates in fast flowing water were higher by as much as a factor of four compared to still water, indicating a strong influence of hydrodynamics. While upstream rates amounted up to 5 mm/year, lower rates of about 1 mm/year were observed downstream. Inspection of the marble substrate surfaces by EDAX and SEM (scanning electron microscope) revealed authigeneously grown calcite crystals of about 10 mu m. Their shape and habit are indicative of a chemically controlled inorganic origin. By applying a mass transfer model for calcite precipitation taking into account the reaction rates at the surface given by Plummer et al. (1978), slow conversion of CO2 into H and HCO3-, and diffusional mass transport across a diffusion boundary layer, we have calculated the deposition rates from the hydrochemistry of the corresponding locations. The calculated rates agree within a factor of two with the experimental results. Our findings confirm former conclusions with respect to fast flow conditions: reasonable rates of calcite precipitation can be estimated in reducing the PWP-rate calculated from the chemical composition of the water by a factor of about ten, thus correcting for the influence of the diffusion boundary layer

Rates of limestone dissolution and calcite precipitation in cave streams of east-central New York State [abstract]., 1996, Palmer A. N.

Dedolomitization as a driving mechanism for karst generation in Permian Blaine formation, southwestern Oklahoma, USA, 1997, Raines M. A. , Dewers T. A. ,
Cyclic deposits of Permian shales, dolomites, and halite and gypsum-bearing strata in the Blaine Formation of Southwestern Oklahoma contain abundant karst features. The present study shows that an important mechanism of karst development in these sequences is dedolomitization, wherein gypsum and dolomite in close spatial proximity dissolve and supersaturate groundwaters with respect to calcite. The net loss of mass accompanying this process (dolomite and gypsum dissolution minus calcite precipitation) can be manifest in secondary porosity development while the coupled nature of this set of reactions results in the retention of undersaturated conditions of groundwater with respect to gypsum. The continued disequilibrium generates karst voids in gypsum-bearing aquifers, a mineral-water system that would otherwise rapidly equilibrate. Geochemical modeling (using the code PHRQPITZ, Plummer et al 1988) of groundwater chemical data from Southwestern Oklahoma from the 1950's up to the present suggests that dedolomitization has occurred throughout this time period in evaporite sequences in Southwestern Oklahoma. Reports from groundwater well logs in the region of vein calcite suggest secondary precipitation, an observation in accord with dedolomite formation In terms of the amounts of void space produced by dissolution, dedolomitization can dominate gypsum dissolution alone, especially in periods of quiescent aquifer recharge when gypsum-water systems would have otherwise equilibrated and karst development ceased. Mass balance modeling plus molar volume considerations show that for every cubic cm of original rock (dolomite plus gypsum), there is 0.54 cm(3) of calcite and 0.47 cm(3) of void space produced Only slightly more pore space results if the dedolomitization reaction proceeds by psuedomorphic replacement of dolomite by calcite than in a reaction mechanism based on conservation of bicarbonate

Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains, 1997, White W. B. ,
Chemical reactions pertinent to karst systems divide broadly into (a) speciation reactions within aqueous solutions, (b) dissolution/precipitation and other acid/base reactions between aqueous solutions and solid minerals, and (c) redox reactions involving various carbon and sulfur-bearing species. As a backdrop against which other chemistry can be evaluated, selected phase diagrams and equilibrium speciation diagrams were calculated for the system Ca--Mg--O--H--C--S. The kinetics of reactions within this system span time scales from milliseconds for homogeneous reactions in solution through hundreds of hours for carbonate mineral dissolution reactions, to geologic time scales for reactions such as the aragonite/calcite inversion or the oxidation/reduction of native sulfur. In purely inorganic systems, kinetic barriers, typically on the order of tens of kJ/mole, are set by nucleation processes and by activated complex formation. Biological processes impact the purely inorganic chemistry by the following mechanisms: (a) Secretions and waste products from biological activity or consumption of CO2 by organisms changes the chemistry in the microenvironments of reaction surfaces. Oxidation potentials, pH, and ion activities may be modified, thus shifting equilibria. (b) Reaction rates may be increased due to modification of activated complexes and thus the activation barriers to reaction. (c) Organic compounds or microorganisms may act as substrates, thus lowering nucleation barriers. The preservation of microorganisms in cave deposits does not necessarily prove a cause and effect relationship

Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA, 1997, Wicks Carol M. , Engeln Joseph F. ,
A 3.7 km flowpath along the main stream channel in Devils Icebox Cave, Boone County, Missouri, was sampled on 23 January, 23 March and 18 September 1994. In January 1994, the water was oversaturated with respect to both calcite and dolomite, and only minor compositional changes were observed along the flowpath. In March 1994, the water was oversaturated with respect to calcite but undersaturated with respect to dolomite. Using a mass-balance approach, the composition of the stream water at downstream locations was predicted by dissolution of dolomite (a maximum of 0.16 mmol s-1) and by a minor amount of calcite precipitation (a maximum of 0.03 mmol s-1). In September 1994, there were increases in the Mg, Ca, and total inorganic carbon (TIC) mass fluxes that were due to the dissolution of dolomite (SIdolomiteSI is saturation index) and calcite (SIcalcite2 of the water should decrease downstream; however, we found an increase in the partial pressure of CO2 along the stream. The source of this additional CO2 is thought to be microbial degradation of bat guano. The decomposition of bat guano appeared to change the composition of the stream water during the period the bats are in the cave, and this change was reflected in the composition of the stream water collected in September 1994. Based on the length of the flowpath and on the average velocity of the water along the flowpath, the travel time of water in this karst stream is less than 4 days. The reactions that control the chemistry of the karst water must be those with equally short characteristic times: the dissolution of dolomite and calcite, CO2 exchange, and microbial degradation of organic matter

ALGAE: AN IMPORTANT AGENT IN DEPOSITION OF KARSTIC TRAVERTINES: OBSERVATIONS ON NATURAL-BRIDGE YERKOPRU TRAVERTINES, ALADAĞLAR, EASTERN TAURIDS-TURKEY, 1997, Bayari C. Serdar, Kurttas Turker
Travertines are terrestrial, fresh water carbonate deposits formed by karstic springs and associated streams which are saturated with respect to calcite. Field observations form recently travertine depositing arstic springs in Aladağlar, Eastern Taurids ? Turkey indicate that the deposition process is accelerated considerably by the physical and biochemical contribution of algae which are mostly belong to classes of Cyanophyceae (blue-green algae) Chlorophyceae (diatoms), Eugleno-phyceae and Xhantophyceae. Algae conributes physically to the deposition of travertine by means of trapping of inorganically formed calcite micro-crystals by algal filaments and mucilagenous secretions and by providing proper nucleation sites for calcite precipitation. Biochemical activity of algae also forces the aquatic system to deposit travertine due to the photosynthetic removal of free carbondioxide from the solution. Field observations indicate that the rate of physical and chemical contribution to the deposition depends strongly on the hydraullic conditions. Physical and biochemical roles becomes important in high and low /velocity/energy streams, respectively. The effect of algal association over the travertine deposition can be observed apparently especially in streams where the ratio of algal mass to the rate of stream flow is substantially high. Since the climatic conditions (air temperature and insolation) have strong influence upon the abundance of algae, the rate of travertine deposited by algal contribution decreasing during winter months when algal population decreases. Similarly , the biochemical contribution shows a diurnal pattern with a maximum during a mid day because of the higher uptake of carbondioxide via photosynthesis.

Special speleothems in cement-grouting tunnels and their implications of the atmospheric CO2 sink, 1998, Liu Z. H. , He D. B. ,
Based on the analyses and comparisons of water chemistry, stable carbon isotopes and deposition rates of speleothems, the authors found that there are two kinds of speleothems in the tunnels at the Wujiangdu Dam site, Guizhou, China, namely the CO2-outgassing type and the CO2-absorbing type. The former is natural, as observed in general karst caves, and the product of karst processes under natural conditions. The latter, however, is special, resulting from the carbonation of a cement-grouting curtain and concrete. Due to the quick absorption of CO2 from the surrounding atmosphere, evidenced by the low CO2 content in the air and the high deposition rate of speleothems (as high as 10 cm/a) in the tunnels, the contribution of the carbonation process to the sink of CO2 in the atmosphere is important tin the order of magnitude of 10(8) tons c/a) and should be taken into consideration in the study of the global carbon cycle because of the use of cement on a worldwide scale

Kinetics and mechanisms of precipitation of calcite as affected by P-CO2 and organic ligands at 25 degrees C, 1998, Lebron I. , Suarez D. L. ,
This study was conducted to develop a model for the precipitation rate of calcite under varying CO2 partial pressures and concentrations of dissolved organic carbon (DOG). Precipitation rates of calcite were measured in solutions with supersaturation values (Omega) between 1 and 20 and in the presence of 2 m(2)L(-1) of calcite. Experiments were run at partial pressures of CO2 (P-CO2) in the range of 0.035-10 kPa and DOC concentrations in the range of 0.02-3.50 mM. The effects of these two variables were quantified separately for the precipitation mechanisms of crystal growth and heterogeneous nucleation. We found an increase in precipitation rate (at constant Omega) when P-CO2 increased. For constant Omega, we also found a linear relationship between calcite precipitation rate and activity of CaHCO3, indicating that CaHCO3 species have an active role in the mechanism of calcite precipitation. These findings suggest that the increase in the precipitation rate with higher P-CO2 levels is likely caused by the increase in the negative charge on the calcite surface together with an increase in the activity of CaHCO3 species in solution. The mechanism of inhibition of calcite crystal growth by organic ligands has been shown to be surface coating of the crystals by DOG. The amount of DOC adsorbed on the surface of the calcite crystals follows a Langmuir isotherm for all the P-CO2 levels studied; however, the amount of DOC necessary to inhibit calcite precipitation increased. With increasing P-CO2, the negative charge on the crystal increases, which affects crystal growth, but also these increases in P-CO2 cause a decrease in the solution pH and increase in the ionic strength for constant Omega. Solution pH and ionic strength affect the structure and degree of dissociation of the organic functional groups, which in turn affects the and DOC concentration on the inhibition of crystal growth and heterogeneous nucleation. The effect of P-CO2 and DOC concentration on the precipitation rate of calcite is expressed in a precipitation rate model which reflects the contributions of crystal growth and heterogeneous nucleation. Copyright (C) 1998 Elsevier Science Ltd

Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records, 2000, Fairchild Ij, Borsato A, Tooth Af, Frisia S, Hawkesworth Cj, Huang Ym, Mcdermott F, Spiro B,
At two caves (Clamouse, S France and Ernesto, NE Italy), cave drip and pool waters were collected and sampled at intervals over a 2-3 year period. Mg/Ca and Sr/Ca concentration ratios, corrected for marine aerosols, are compared with those of bedrocks and, in some cases, aqueous leachates of soils and weathered bedrocks. Cave waters do not lie along mixing lines between calcite and dolomite of bedrock carbonate, but typically show enhanced and covarying Mg/Ca and Sr/Ca. Four factors are considered as controlling processes. (1) The much faster dissolution rate of calcite than dolomite allows for the possibility of increase of Mg/Ca if water-rock contact times are increased during drier conditions. A theoretical model is shown to be comparable to experimental leachates. (2) Prior calcite precipitation along a flow path is a powerful mechanism for generating enhanced and covarying Mg/Ca and Sr/Ca ratios. This mechanism requires the solution to lose CO, into pores or caverns. (3) Incongruent dolomite dissolution has only limited potential and is best regarded as two separate processes of dolomite dissolution and calcite precipitation. (4) selective leaching of Mg and Sr with respect to Ca is shown to be important in leachates from Ernesto where it appears to be a phenomenon of calcite dissolution. In general selective leaching can occur whenever Ca is sequestered into precipitates due to freezing or drying of soils, or if there is derivation of excess Sr and Mg from non-carbonate species. The Ernesto cave has abundant water supply which in the main chamber is derived from a reservoir with year-round constant P-CO2 of around 10(-2.4) and no evidence of calcite precipitation in the karst above the cave. Two distinct, bur overlying trends of enhanced and covarying Mg/Ca and Sr/Ca away from the locus of bedrock compositions are due to calcite precipitation within the cave and, at a variable drip site, due to enhanced selective leaching at slow drip rates. Mg-enhancement in the first chamber is due to a more dolomitic bedrock and longer residence times. The Clamouse site has a less abundant water supply and presents geochemical evidence of prior calcite precipitation. both in the cave and in overlying porous dolomite/dedolomitized limestone bedrock. Initial P-CO2 values as high as 10(-1) are inferred. Experimental incubations of Clamouse soils which generated enhanced P-CO2 and precipitated CaCO3 had compositions similar to the karst waters. Calcite precipitation is inferred to he enhanced in drier conditions. Hydrological controls on cave water chemistry imply that the trace element chemistry of speleothems may be interpretable in palaeohydrological terms. Drier conditions tends to promote not only longer mean residence times (enhancing dolomite dissolution and hence Mg/Ca), but also enhances degassing and calcite precipitation leading to increased Mg/Ca and Sr/Ca. (C) 2000 Elsevier Science B.V. All rights reserved

Natural water softening processes by waterfall effects in karst areas, 2000, Zhang D. D. , Peart M. , Zhang Y. J. , Zhu A. , Cheng X. ,
The reduction of water hardness, which occurs at waterfalls on rivers in karst areas, is considered to be a result of the waterfall effects. These consist of aeration, jet-flow and low-pressure effects. Waterfall effects bring about two physical changes in river water: an increase in the air-water interface and turbulence. A series of experiments was designed and implemented in order to investigate whether these effects and associated physical changes may cause a reduction of water hardness. From an experiment involving the enlargement of interface area, the plot of air-water interface areas against conductivity revealed that the higher the air-water interface, the more rapidly conductance declines (and Ca2 is precipitated). A bubble producer was designed and used to simulate bubbles that are produced by aeration and low-pressure effects and a faster decline of water hardness was observed at the location with bubbles in this experiment. When a supersaturated solution was passed through a jet-stream producer, a rapid reduction of water hardness and an increase of pH appeared. Field measurements were used to support the laboratory experiments. Work on the Ya He River and at the Dishuiyan Waterfalls revealed that places with aeration had the quickest hardness reduction and the highest average rate of calcite deposition

Formation of dolomite mottling in Middle Triassic ramp carbonates (Southern Hungary), 2000, Torok A. ,
The Middle Triassic carbonates of the Villany Mountains were deposited on a homoclinal carbonate ramp. Many of the carbonates from the 700 m-thick sequence show partial or complete dolomitization. The present paper describes dolomites that occur in a limestone unit as irregular mottles and as pore- and fracture-filling cements. Replacement-type scattered dolomite rhombs in the mottles having inclusion-rich, very dull luminescent cores and limpid non-luminescent outer zones represent the initial phase of dolomitization. The isotopic composition of these dolomites (delta(13)C = .30 parts per thousand VPDB, delta(18)O = -3.60 parts per thousand VPDB) is similar to that of the calcitic micrite (delta(13)C = .6 parts per thousand VPDB, delta(18)O = -4.00 parts per thousand VPDB) indicating that no external fluids were introduced during dolomite formation. The elevated Sr content of the micrites implies that sediment was originally aragonite or high-Mg calcite. Dolomitization took place in the burial realm from a 'marine' pore-fluid in a partly closed system. Later fracture-related saddle dolomite reflects elevated formation temperatures and increasing burial. Five calcites were identified. Multiple generations of calcite-filled fractures were formed during burial diagenesis generally having dull or no luminescence (delta(13)C = .80 parts per thousand VPDB, delta(18)O = -6.40 parts per thousand VPDB). The latest phase calcites are related to karst formation, having a very negative isotopic composition (delta(13)C = -5.0 to -7.2 parts per thousand VPDB and delta(18)O approximate to -7.44 parts per thousand VPDB). The karst-related processes include dissolution, calcite precipitation and partial replacement of dolomites by complex zoned bright yellow calcite. The timing of dolomitization is uncertain, but the first phase took place in a partly closed system prior to stylolite formation. Late-stage saddle dolomites were precipitated during maximum burial in the Cretaceous. The dissolution of dolomites and karst-related calcite replacement was not earlier than Late Cretaceous. (C) 2000 Elsevier Science B.V. All rights reserved

Results 1 to 15 of 60
You probably didn't submit anything to search for