Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That fluorescein is a reddish-yellow crystalline compound that imparts a brilliant green fluorescent color to water in very dilute solutions; used to label underground water for identification of an emergence [10]. also commonly known as uranine. dye type: xanthene.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for calcite (Keyword) returned 573 results for the whole karstbase:
Showing 1 to 15 of 573
Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records, , Baldini Jul, Mcdermott F, Fairchild Ij,
The identification of vadose zone hydrological pathways that most accurately transmit climate signals through karst aquifers to stalagmites is critical for accurately interpreting climate proxies contained within individual stalagmites. A three-year cave drip hydrochemical study across a spectrum of drip types in Crag Cave, SW Ireland, reveals substantial variability in drip hydrochemical behaviour. Stalagmites fed by very slow drips ( 2[no-break space]ml/min) sites, apparently unconnected with local meteorological events. Water from these drips was typically undersaturated with respect to calcite, and thus did not result in calcite deposition. Data presented here suggest that drips in this flow regime also experience flow re-routing and blocking, and that any stalagmites developed under such drips are unsuitable as mid- to high-resolution paleoclimate proxies. Most drip sites demonstrated seasonal [Ca2] and [Mg2] variability that was probably linked to water excess. Prior calcite precipitation along the flowpath affected the chemistry of slowly dripping sites, while dilution predominantly controlled the water chemistry of the more rapidly dripping sites. This research underscores the importance of understanding drip hydrology prior to selecting stalagmites for paleoclimate analysis and before interpreting any subsequent proxy data

Origin of the sedimentary deposits of the Naracoorte Caves, South Australia, , Forbes Ms, Bestland Ea,
The origin of the sediments located in the Naracoorte Caves (South Australia) was investigated via the analysis of strontium isotope ratios (87Sr/86Sr), elemental geochemistry, and mineralogy. Sedimentary deposits located in Robertson, Wet, Blanche and several other chambers in Victoria Cave are all variable mixes of fine sand and coarse silts, which display similar and consistent strontium isotope ratios (0.717-0.725). This suggests that over the 400[no-break space]ka time frame that these deposits span there has been minimal variation in the source of the clastic sediments. Increased strontium concentrations for these cave sediments correspond with increasing silt content, yet there is no correlation between 87Sr/86Sr ratios and silt content. This implies that the silt-sized component of the sediments is the main contributor of strontium to the cave sediments. Comparisons of 87Sr/86Sr with regional surficial deposits show a significant correlation between the cave sediments (avg: 0.7228; n = 27), the fine silt lunettes of the Bool Lagoon area (avg: 0.7224; n = 4), the sandy A horizons of the Coonawarra Red Brown Earths (RBEs; avg: 0.726; n = 5), and Holocene age podsolic sand deposits (0.723). These data suggest that there has been substantial flux from this group of deposits to the caves, as would be expected considering prevailing winds. This relationship is further supported by a strong correlation between many trace elements, including Ti, Zr, Ce, and Y; however, variations in clay mineralogy suggest that the fine silt-dominated lunettes and Padthaway RBEs were not significant contributors to the cave deposits. Hence, the detritus entering the caves was more than likely from areas proximal to the cave entrance and was dominated by medium grain-sized materials. Major regional deposits, including the coarser-grained, calcite-rich Bridgewater Formation sands, basalts from the lower SE, Padthaway Horst granites, Gambier limestone, and metamorphics from the Adelaide geosyncline show minimal correlation in 87Sr/86Sr ratios, elemental geochemistry, and mineralogy with the cave sediments, and are discounted as significant sources. In comparison, 87Sr/86Sr ratios for the Coorong silty sands (0.717-0.724), Lower Murray sands (0.727-0.730), and the medium size silt component of the Murray-Darling River system (0.71-0.72), compare favourably with the cave sediments. This relationship is further supported by similarities in elemental chemistry and mineralogy. Thus, much of the strontium-rich silt that is now located in the Naracoorte Cave sediments likely originated from the Murray-Darling basin. Over time, this material has been transported to the SE of South Australia, where it mixed with the medium sand component of the regressive dune ridge sequence, locally derived organic matter, limestone fragments, and fossil material to produce the unique deposits that we see evident in many of the chambers of the Naracoorte Cave system today

Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, , Bontognali Tomaso R. R. , D’angeli Ilenia M. , Tisato Nicola, Vasconcelos Crisogono, Bernasconi Stefano M. , Gonzales Esteban R. G. , De Waele Jo

Unusual speleothems resembling giant mushrooms occur in Cueva Grande de Santa
Catalina, Cuba. Although these mineral buildups are considered a natural heritage, their
composition and formation mechanism remain poorly understood. Here we characterize
their morphology and mineralogy and present a model for their genesis. We propose that
the mushrooms, which are mainly comprised of calcite and aragonite, formed during four
different phases within an evolving cave environment. The stipe of the mushroom is an
assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts
that were subsequently encrusted by cave clouds (mammillaries). More peculiar is the
cap of the mushroom, which is morphologically similar to cerebroid stromatolites and
thrombolites of microbial origin occurring in marine environments. Scanning electron
microscopy (SEM) investigations of this last unit revealed the presence of fossilized
extracellular polymeric substances (EPS)—the constituents of biofilms and microbial
mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that
the mushroom cap formed through a microbially-influenced mineralization process. The
existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence
of phototrophs) has interesting implications for the study of fossil microbialites preserved
in ancient rocks, which are today considered as one of the earliest evidence for life on
Earth.


Calcite Bubbles - A New Cave Formation?, 1950, Warwick. Gordon T.

'After-Glow'' of Cave Calcite, 1956, O'brien, Brian J.

The Aragonite-Calcite Problem, 1962, Curl, Rane L.

Etude crystallographique des pavements polygonaux des croutes polycristallines de calcite des grottes, 1963, Andrieux N

A Study of Calcite Solutions at 10 Deg. C, 1964, Picknett R. G.

Processes of limestone cave development., 1964, Howard Alan D.
Three processes successively predominate in enlarging original fractures within limestone into cavern passages: (I) early dissolving by acid produced by oxidizing reactions within the groundwater as it flows through the limestone; (2) dissolving caused by the initial undersaturation with respect to calcite of the groundwater when it enters the limestone; and (3) increased dissolving which occurs at the transition from laminar to turbulent groundwater flow. Only those original fractures in limestone which are widest and which have a high hydraulic gradient acting across them will be enlarged into cavern passages. Until all available surface drainage has been diverted underground, cavern development takes place under a constant hydraulic head, and the rate of limestone solution increases with time. After all available surface drainage has been diverted underground, the discharge through the cave, rather than the hydraulic head, remains constant, and the rate of limestone solution decreases toward a constant value. These principles apply to caverns formed both by water-table flow and by artesian flow.

Geomorphology of Punchbowl and Signature Caves, Wee Jasper, New South Wales, 1964, Jennings, J. N.

Because of the ease of its exploration, the Punchbowl-Signature system (Map reference 677587, Army 1/50,000 Sheet 8627-IV, Goodradigbee) is the most frequently visited of the Wee Jasper caves though it contains even less calcite decoration than does Dip Cave. On the other hand, the system is of considerable scientific interest, both biological and geomorphological. Biologically the interest centres on the long-term investigations of the colony of Bentwing Bats (Miniopterus schreibersii blepotis), initiated by G. Dunnet, sustained and enlarged by D. Purchase. On the geomorphological side, though it is now a dry inactive system like Dip Cave, it possesses a morphology which reveals much of the history of its excavation by a former underground river and so contrasts with its neighbour in the same geological formation only a mile away where there are many difficulties in the way of interpretation of its evolution (Jennings, 1963a).


Calcite-Aragonite speleothems from Hand-dug cave in Northeast Kansas., 1966, Dort Wakefield Jr. , Siegel Frederic R.
Speleothems in the form of stalactites, linear stalactitic growths, flowstone, and crusts, from a hand-dug cave in Northeast Kansas (Sec. 2 NENW, T2S, R22E) are composed of calcite and aragonite. If the estimated age of the cave is correct, i.e., 150 to 200 years old, the stalactites have grown at a maximum rate of 0.20 to 0.15 millimetres per year along their vertical axes. All of the speleothems examined contain about one percent strontium (based on qualitative emission spectrograph analyses). Rate of supply and evaporation of the vadose waters may dictate whether aragonite or calcite is the polymorph that precipitates from the cave waters.

Further investigations into Bacterial and Algal populations of caves in South Wales., 1967, Williams Mary Ann Mason
Some physical data collected over a period of a year in seven locations of the Ogof Ffynnon Ddu cave system in South Wales are reported, including humidity, air and water temperature, pH of the water, as well as the organic oxygen demand of the water. It is shown that seasonal variations in the physical constant in this particular cave system are not well marked. Algae and bacteria were isolated from the soil samples and from calcareous deposits. A total of 30 algal species, of which 13 belong to the Cyanophyta, 22 to the Chlorophyta, and 7 to the Chrysophyta~Baccilariophyceae were found. Thirty-eight heterotrophic and 7 autotrophic bacteria were isolated. The thin films on water surfaces, besides diatoms, contained several flagellates and some ostracods, while some protozoa were found associated with the bacteria and algae in the soft calcite deposits.

Halite Speleothems From the Nullarbor Plain, Western Australia, 1967, Lowry, D. C.

Halite has been found in five caves on the Nullarbor Plain, Western Australia. It occurs as stalactites, stalagmites, crusts, or fibres. The climate of the plain is arid to semi-arid, and the halite is derived from wind-blown salts that accumulate in the soil. The halite forms in the caves under conditions of relatively low humidity (about 70%) and high temperature (about 67°F). Its association with older calcite deposits suggests the climate was once wetter or cooler than at present.


Deposition of Calcite, Aragonite, and Clastic Sediments in a Missouri Cave During Four and One-Half Years, 1972, Reams, Max W.

Seminar on Karst Denudation - An accurate method for calculating Saturation Levels of Ground Waters with respect to Calcite and Dolomite, 1972, Jacobson R. L. , Langmuir D.

Results 1 to 15 of 573
You probably didn't submit anything to search for