Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That interstitial water is water held in small wedge like interstices at grain contact [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carbon sink (Keyword) returned 6 results for the whole karstbase:
Regional atmospheric carbon sink within the south central Kentucky karst., 2000, Groves C. , Meiman J.

Role of karstic dissolution in global carbon cycle, 2002, Gombert P. ,
The balance of the world carbon exchanges shows a 1.3 GtC/year unknown sink in the continental biosphere, The aim of this article is to determine the contribution of the karstic dissolution processes to this sink. To calculate the karstic dissolution in every part of the world, a new parameter has been created, called 'maximal potential dissolution' (MPD), It calculates the theoretical dissolution rate in an idealized karstic system reduced to a simple, pure carbonated block crossed by a flux of CO-enriched water. MPD is as efficient as other methods in calculating the karstic dissolution. MPD can be calculated everywhere with the mean annual temperature and precipitation values, In this paper. climatic data from 266 meteorological stations all over the world have been treated. They gave a mean MPD value for each main climatic type. The calculation has been made from 10degrees square grids, each grid assigned to a climatic type, i.e. to a mean value of MPD. The total consumed carbon mass all around the world is thus around 0.3 GtC/year, which represents 23% of the unknown carbon sink. More precise calculations are in progress based on a thousand climatic values. (C) 2002 Elsevier Science B.V. All rights reserved

Role of karstic dissolution in global carbon cycle , 2002,

The balance of the world carbon exchanges shows a 1.3 GtC/year unknown sink in the continental biosphere. The aim of this article is to determine the contribution of the karstic dissolution processes to this sink. To calculate the karstic dissolution in every part of the world, a new parameter has been created, called «maximal potential dissolution» (MPD). It calculates the theoretical dissolution rate in an idealized karstic system reduced to a simple, pure carbonated block crossed by a flux of CO2- enriched water. MPD is as efficient as other methods in calculating the karstic dissolution. MPD can be calculated everywhere with the mean annual temperature and precipitation values. In this paper, climatic data from 266 meteorological stations all over the world have been treated. They gave a mean MPD value for each main climatic type. The calculation has been made from 10j square grids, each grid assigned to a climatic type, i.e. to a mean value of MPD. The total consumed carbon mass all around the world is thus around 0.3 GtC/year, which represents 23% of the unknown carbon sink. More precise calculations are in progress based on a thousand climatic values.


An Unsung Carbon Sink , 2011, Larson, Christina

The abstract below is for the main article, which is:
Jiao, et al.  China Looks to Balance Its Carbon Books

An equitable solution to reining in carbon dioxide emissions worldwide is proving elusive, and with the Kyoto Protocol set to expire in 2012, time is running out. As nations grope for a consensus, China is pressing ahead on its own to sharply reduce energy intensity by shuttering inefficient coal-fired power plants and capping energy use. Last week, the State Council approved a plan to promote low-carbon energy and slash CO2 emissions by 17% per unit of GDP by 2015. But these efforts mask major uncertainties in China's carbon balance sheet: just how much CO2 the country emits and how much its landscape absorbs.

****

The Larson's entry on the same pages specifically features the work of Chinese scientists studying carbonate karst hydrochemistry and cites thoughts of some international karst scholars (Dr. George Veni, Dr. Niko Goldshcheider, and Dr. Chris Groves) on the role of karst processes as a global carbon sink.  


Carbon cycle in the epikarst systems and its ecological effects in South China, 2012, Jiang Z. , Lian Y. , Qin X.

The carbon cycle in a global sense is the biogeochemical process by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the earth. For epikarst systems, it is the exchange of carbon among the atmosphere, water, and carbonate rocks. Southern China is located in the subtropical zone; its warm and humid weather creates favorable conditions for the dynamic physical, chemical, and ecological processes of the carbon cycle. This paper presents the mechanisms and characteristics of the carbon cycle in the epikarst systems in south China. The CO2 concentration in soils has clear seasonal variations, and its peak correlates well with the warm and rainy months. Stable carbon isotope analysis shows that a majority of the carbon in this cycle is from soils. The flow rate and flow velocity in an epikarst system and the composition of carbonate rocks control the carbon fluxes. It was estimated that the karst areas in south China contribute to about half of the total carbon sink by the carbonate system in China. By enhancing the movement of elements and dissolution of more chemical components, the active carbon cycle in the epikarst system helps to expand plant species. It also creates favorable environments for the calciphilic plants and biomass accumulation in the region. The findings from this study should help in better understanding of the carbon cycle in karst systems in south China, an essential component for the best management practices in combating rock desertification and in the ongoing study of the total carbon sink by the karst flow systems in China


A framework for assessing the role of karst conduit morphology, hydrology, and evolution in the transport and storage of carbon and associated sediments, 2013, Veni George

Karst aquifers and conduits form by dissolution of carbonate minerals and the slow release of inorganic carbon to the surface environment. As conduits evolve in size, morphology, and position within the aquifer, their function and capacity change relative to the storage and transport of inorganic and organic carbon as sediment. Conduits serve mostly as transport mechanisms in relation to sediments. quantified data are sparse, but for conduits to function effectively there must be at least equilibrium in the amount of sediment entering and exiting the aquifer. If sediment discharge exceeds input, little sediment will remain underground. when natural declines in base level cease removing sediments and only deposit calcite speleothems, these materials are stored until the rock mass is denuded. while sediment storage is mostly transient in hydrologically active conduits, relative differences occur. Aquifers with conduits developed at multiple levels or as floodwater mazes store proportionately greater volumes of sediment. Hypogenic systems should store greater volumes of sediment than epigenic aquifers because they mostly discharge a dissolved load as opposed to both dissolved and suspended clastic loads. However, some hypogenic aquifers are diffusely recharged and receive and store little sediment from the surface. The global volume of sediment and organic carbon stored in karst aquifers is estimated in this study to be on the order of 2x104 km3 and 2x102 km3, respectively. The amount of organic carbon stored in paleokarst is not estimated, but available data indicate it is substantially greater than that stored in modern karst aquifers. Development of such data may suggest that paleokarst petroleum reservoirs might serve as efficient carbon sinks for global carbon sequestration. Hydrocarbon-depleted paleokarst reservoirs should provide substantially more storage per injection well than sequestration in non-paleokarstic rocks.


Results 1 to 6 of 6
You probably didn't submit anything to search for