Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That conduit flow; karst conduit flow is underground water flow within conduits. conduit flow is generally turbulent, but can also be laminar [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carbonate platform (Keyword) returned 65 results for the whole karstbase:
Showing 1 to 15 of 65
Shallow-marine carbonate facies and facies models, 1985, Tucker M. E. ,
Shallow-marine carbonate sediments occur in three settings: platforms, shelves and ramps. The facies patterns and sequences in these settings are distinctive. However, one type of setting can develop into another through sedimentational or tectonic processes and, in the geologic record, intermediate cases are common. Five major depositional mechanisms affect carbonate sediments, giving predictable facies sequences: (1) tidal flat progradation, (2) shelf-marginal reef progradation, (3) vertical accretion of subtidal carbonates, (4) migration of carbonate sand bodies and (5) resedimentation processes, especially shoreface sands to deeper subtidal environments by storms and off-shelf transport by slumps, debris flows and turbidity currents. Carbonate platforms are regionally extensive environments of shallow subtidal and intertidal sedimentation. Storms are the most important source of energy, moving sediment on to shoreline tidal flats, reworking shoreface sands and transporting them into areas of deeper water. Progradation of tidal flats, producing shallowing upward sequences is the dominant depositional process on platforms. Two basic types of tidal flat are distinguished: an active type, typical of shorelines of low sediment production rates and high meteorologic tidal range, characterized by tidal channels which rework the flats producing grainstone lenses and beds and shell lags, and prominent storm layers; and a passive type in areas of lower meteorologic tidal range and higher sediment production rates, characterized by an absence of channel deposits, much fenestral and cryptalgal peloidal micrite, few storm layers and possibly extensive mixing-zone dolomite. Fluctuations in sea-level strongly affect platform sedimentation. Shelves are relatively narrow depositional environments, characterized by a distinct break of slope at the shelf margin. Reefs and carbonate sand bodies typify the turbulent shelf margin and give way to a shelf lagoon, bordered by tidal flats and/or a beach-barrier system along the shoreline. Marginal reef complexes show a fore-reef--reef core--back reef facies arrangement, where there were organisms capable of producing a solid framework. There have been seven such phases through the Phanerozoic. Reef mounds, equivalent to modern patch reefs, are very variable in faunal composition, size and shape. They occur at shelf margins, but also within shelf lagoons and on platforms and ramps. Four stages of development can be distinguished, from little-solid reef with much skeletal debris through to an evolved reef-lagoon-debris halo system. Shelf-marginal carbonate sand bodies consist of skeletal and oolite grainstones. Windward, leeward and tide-dominated shelf margins have different types of carbonate sand body, giving distinctive facies models. Ramps slope gently from intertidal to basinal depths, with no major change in gradient. Nearshore, inner ramp carbonate sands of beach-barrier-tidal delta complexes and subtidal shoals give way to muddy sands and sandy muds of the outer ramp. The major depositional processes are seaward progradation of the inner sand belt and storm transport of shoreface sand out to the deep ramp. Most shallow-marine carbonate facies are represented throughout the geologic record. However, variations do occur and these are most clearly seen in shelf-margin facies, through the evolutionary pattern of frame-building organisms causing the erratic development of barrier reef complexes. There have been significant variations in the mineralogy of carbonate skeletons, ooids and syn-sedimentary cements through time, reflecting fluctuations in seawater chemistry, but the effect of these is largely in terms of diagenesis rather than facies

KIMMERIDGIAN TITHONIAN EUSTACY AND ITS IMPRINTS ON CARBONATE ROCKS FROM THE DINARIC AND THE JURA CARBONATE PLATFORMS, 1991, Strohmenger C. , Deville Q. , Fookes E. ,
The Upper Jurassic stratigraphy and the facies development of the Dinaric carbonate platform of Slovenia (northwest Yugoslavia) are compared with the Jura carbonate platform of southern Jura (southeast France). The similar facies development between the two platforms during the Kimmeridgian and the Tithonian, as well as a pronounced discontinuity in the same stratigraphical position (controlled by dasycladacean algae and/or ammonites), made it reasonable to correlate the two regions. This discontinuity is marked by a bauxite horizon and a karst breccia in south Slovenia (inner platform), and by a black-pebble conglomerate (inner platform) and a reef breccia (outer platform) in the southern Jura. These features are interpreted as type 1 sequence boundaries related to a global fall of sea level. In southern Jura, biostratigraphical elements situate the sequence boundary between the Eudoxus and the <> ( = Elegans) zones, most probably at the end of the Beckeri ( = Autissiodorensis) zone. Integrating this discontinuity into the eustatic sea level curve proposed by the Exxon group (version 3.1) is difficult because the only suitable sequence boundaries, SB 139 and SB 142, are respectively too young (younger than the <> zone) or too old (older than the Eudoxus zone). We therefore suggest to introduce a new sequence boundary within the upper part of the Beckeri zone which would correspond to a <> sequence boundary SB 140. The investigations further show that Clypeina jurassica FAVRE and Campbelliella striata (CAROZZI) BERNIER most likely appear in the Beckeri zone in the realm of the Jura carbonate platform. The same dasycladacean algae assemblage defines a cenozone identified as <> in Slovenia. It therefore seems possible to correlate the stratigraphic limit between <> and <> of the Dinaric carbonate platform with the beginning of the Beckeri zone

A MIDDLE PROTEROZOIC PALEOKARST UNCONFORMITY AND ASSOCIATED SEDIMENTARY-ROCKS, ELU BASIN, NORTHWEST CANADA, 1991, Pelechaty S. M. , James N. P. , Kerans C. , Grotzinger J. P. ,
A major palaeokarst erosion surface is developed within the middle Proterozoic Elu Basin, northwestern Canada. This palaeokarst is named the sub-Kanuyak unconformity and truncates the Parry Bay Formation, a sequence of shallow-marine dolostones that were deposited within a north-facing carbonate platform under a semi-arid climate. The sub-Kanuyak unconformity exhibits up to 90 m of local relief, and also formed under semi-arid conditions when Parry Bay dolostones were subaerially exposed during a relative sea-level drop of about 180 m. Caves and various karren developed within the meteoric vadose and phreatic zones. Their geometry, size and orientation were largely controlled by northwest- and northeast-trending antecedent joints, bedding, and lithology. Near-surface caves later collapsed forming valleys, and intervening towers or walls, and plains. Minor terra rossa formed on top of highs. Karstification was most pronounced in southern parts of Bathurst Inlet but decreased northward, probably reflecting varying lengths of exposure time along a north-dipping slope. The Kanuyak Formation is up to 65 m thick, and partially covers the underlying palaeokarst. It consists of six lithofacies: (i) breccia formed during collapse of caves, as reworked collapse breccia and regolith; (ii) conglomerate representing gravel-dominated braided-fluvial deposits; (iii) sandstone deposited as braided-fluvial and storm-dominated lacustrine deposits; (iv) interbedded sandstone, siltstone and mudstone of sheet flood origin; (v) dolostones formed from dolocretes and quiet-water lacustrine deposits; and (vi) red-beds representing intertidal-marine mudflat deposits. Rivers flowed toward the northwest and northeast within karst valleys and caves; lakes were also situated within valleys; marine mudflat sediments completely cover the palaeokarst to the north. A regional correlation of the sub-Kanuyak unconformity with the intra-Greenhorn Lakes disconformity within the Coppermine homocline suggests that similar styles of karstification occurred over an extensive region. The Elu Basin palaeokarst, however, was developed more landward, and was exposed for a longer period of time than the Coppermine homocline palaeokarst

Evolution des karsts Ocaniens (Karsts, bauxite et phosphates), 1992, Bourrouilhlejan, Fr.
EVOLUTION OF THE PACIFIC OCEAN KARSTS - Karst phenomena constitute one of the main characteristics of the "high carbonate islands" of the Pacific Ocean. They are the key to the under-standing of the geological evolution, the stratigraphy, from Lower Miocene to Pleistocene and mid-Holocene, the diagenesis, mainly dolomitization and the current economic interest based on bauxite and phosphate. The eustatic variations have been numerous over the past 25 million years and can be added or substracted from the emersion and submersion movements of the plate supporting these carbonate platforms. Each island therefore has its own complex geological background with dolomitization, calcrete, bauxitic soils, fossil marine notches and karst surface either submerged or filled with phosphate, which can be mined for profit. Thanks to a thorough study of these platforms, it has been possible to establish an evolution of karst genesis in accordance with the evolution of the Pacific lithosphere and also to draw up a new model of phosphate genesis linked to phosphato-bauxitic soils and meromictic anoxic lakes.

GEOLOGY AND KARST GEOMORPHOLOGY OF SAN-SALVADOR ISLAND, BAHAMAS, 1995, Mylroie J. E. , Carew J. L. ,
The exposed carbonates of the Bahamas consist of late Quaternary limestones that were deposited during glacio-eustatic highstands of sea level. Each highstand event produced transgressive-phase, stillstand-phase, and regressive-phase units. Because of slow platform subsidence, Pleistocene carbonates deposited on highstands prior to the last interglacial (oxygen isotope substage 5e, circa 125,000 years ago) are represented solely by eolianites. The Owl's Hole Formation comprises these eolianites, which are generally fossiliferous pelsparites. The deposits of the last interglacial form the Grotto Beach Formation, and contain a complete sequence of subtidal intertidal and eolian carbonates. These deposits are predominantly oolitic. Holocene deposits are represented by the Rice Bay Formation, which consists of intertidal and eolian pelsparites deposited during the transgressive-phase and stillstand-phase of the current sea-level highstand. The three formations are separated from one another by well-developed terra-rossa paleosols or other erosion surfaces that formed predominantly during intervening sea-level lowstands. The karst landforms of San Salvador consist of karren, depressions, caves, and blue holes. Karren are small-scale dissolutional etchings on exposed and soil-covered bedrock that grade downward into the epikarst, the system of tubes and holes that drain the bedrock surface. Depressions are constructional features, such as swales between eolian ridges, but they have been dissolutionally maintained. Pit caves are vertical voids in the vadose zone that link the epikarst to the water table. Flank margin caves are horizontal voids that formed in the distal margin of a past fresh-water lens; whereas banana holes are horizontal voids that developed at the top of a past fresh-water lens, landward of the lens margin. Lake drains are conduits that connect some flooded depressions to the sea. Blue holes are flooded vertical shafts, of polygenetic origin, that may lead into caves systems at depth. The paleokarst of San Salvador is represented by flank margin caves and banana holes formed in a past fresh-water lens elevated by the last interglacial sea-level highstand, and by epikarst buried under paleosols formed during sea-level lowstands. Both carbonate deposition and its subsequent karstification is controlled by glacio-eustatic sea-level position. On San Salvador, the geographic isolation of the island, its small size, and the rapidity of past sea level changes have placed major constraints on the production of the paleokarst

BLUE HOLES - DEFINITION AND GENESIS, 1995, Mylroie J. E. , Carew J. L. , Moore A. I. ,
Blue holes are karst features that were initially described from Bahamian islands and banks, which have been documented for over 100 years. They are water-fined vertical openings in the carbonate rock that exhibit complex morphologies, ecologies, and water chemistries. Their deep blue color, for which they are named, is the result of their great depth, and they may lead to cave systems below sea level Blue holes are polygenetic in origin, having formed: by drowning of dissolutional sinkholes and shafts developed in the vadose zone; by phreatic dissolution along an ascending halocline; by progradational collapse upward from deep dissolution voids produced in the phreatic zone; or by fracture of the bank: margin. Blue holes are the cumulative result of carbonate deposition and dissolution cycles which have been controlled by Quaternary glacioeustatic fluctuations of sea-level. Blue holes have been widely studied during the past 30 years, and they have provided information regarding karst processes, global climate change, marine ecology, and carbonate geochemistry. The literature contains a wealth of references regarding blue holes that are at times misleading, and often confusing. To standardize use of the term blue hob, and to familiarize the scientific community with their nature, we herein define them as follows: ''Blue holes are subsurface voids that are developed in carbonate banks and islands; are open to the earth's surface; contain tidally-influenced waters of fresh, marine, or mixed chemistry; extend below sea level for a majority of their depth; and may provide access to submerged cave passages.'' Blue holes are found in two settings: ocean holes open directly into the present marine environment and usually contain marine water with tidal now; inland blue holes are isolated by present topography from surface marine conditions, and open directly onto the land surface or into an isolated pond or lake, and contain tidally-influenced water of a variety of chemistries from fresh to marine

CYCLOSTRATIGRAPHY OF MIDDLE DEVONIAN CARBONATES OF THE EASTERN GREAT-BASIN, 1995, Elrick M,
Middle Devonian carbonates (250-430 m thick) of the eastern Great Basin were deposited along a low energy, westward-thickening, distally steepened ramp. Four third-order sequences can be correlated across the ramp-to-basin transition and are composed of meter-scale, upward-shallowing carbonate cycles (or parasequences). Peritidal cycles (shallow subtidal facies capped by tidal-flat laminites) constitute 90% of all measured cycles and are present across the entire ramp. The peritidal cycles are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Approximately 80% of the peritidal cycle caps show evidence of prolonged subaerial exposure including sediment-filled dissolution cavities, horizontal to vertical desiccation cracks, rubble and karst breccias, and pedogenic alteration; locally these features are present down to 2 m below the cycle caps. Subtidal cycles (capped by shallow subtidal facies) are present along the middle-outer ramp and ramp margin and indicate incomplete shallowing. submerged subtidal cycles (64% of all subtidal cycles) are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure (dissolution cavities and brecciation). Average peritidal and subtidal cycle durations are between approximately 50 and 130 k.y. (fourth- to fifth-order). The combined evidence of abundant exposure-capped peritidal and subtidal cycles, transgressive-prone cycles, and subtidal cycles correlative with updip peritidal cycles indicates that the cycles formed in response to fourth- to fifth-order, glacio-eustatic sea-level oscillations. Sea-level oscillations of relatively low magnitude (< 10 m) are suggested by the abundance of peritidal cycles, the lack of widely varying, water-depth-dependent facies within individual cycles, and the presence of noncyclic stratigraphic intervals within intrashelf-basin, slope, and basin facies. Noncyclic intervals represent missed subtidal beats when the seafloor lay too deep to record the effects of the short-term sea-level oscillations. Exposure surfaces at the tops of peritidal and subtidal cycles represent one, or more likely several, missed sea-level oscillations when the platform lay above fluctuating sea level, but the amplitude of fourth- to fifth-order sea-level oscillation(s) were not high enough to flood the ramp. The large number of missed beats (exposure-capped cycles), specifically in Sequences 2 and 4, results in Fischer plots that show poorly developed rising and falling limbs (subdued wave-like patterns); consequently the Fischer plots: are of limited use as a correlation tool for these particular depositional sequences. The abundance of missed beats also explains why Milankovitch-type cycle ratios (similar to 5:1 or similar to 4:1) are not observed and why such ratios would not be expected along many peritidal-cycle-dominated carbonate platforms

Digital shaded relief image of a carbonate platform (northern Great Bahama Bank); scenery seen and unseen, 1996, Boss Sk,
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise

Ce-anomalies in the textural components of upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy), 1997, Mongelli G. ,
The chemical and mineralogical composition of Upper Cretaceous Apulian karat bauxites (southern Italy) and their textural components, i.e. ooids and matrix, has been studied. The bulk samples are composed of boehmite, hematite, anatase and kaolinite. The samples collected along a vertical profile show a downward enrichment for the elements Rb, Sr, Ba, Ni and Cr. A similar distribution is observed in deposits bauxitized in situ at the expense of matrix-like material collected in the karst zone. The ooids consist mainly of hematite with minor boehmite and anatase, whereas in the matrix boehmite prevails on hematite, kaolinite and anatase. In the void fillings in the matrix there is a Ca-fluorocarbonate having a Ce/Ce* of 5.8. The ooids, with the exception of Ce, are enriched in REE and show a higher (La/Yb)(ch) ratio relative to the matrix. The matrix exhibits a large positive Ce-anomaly whereas the ooids have negative Ce-anomaly. The Ce fractionation between the textural components can be explained assuming: (1) Ce oxidation and cerianite precipitation in the uppermost part of the deposits; (2) scavenging of REE from Ce-depleted percolating solutions by the iron oxide, inducing both REE-enrichment and Ce-negative anomalies in ooids; (3) remobilization of cerium as fluoride complex, as a consequence of more acidic conditions in the uppermost part of the deposit, and precipitation of Ce3 as fluorocarbonate mineral toward the carbonate bedrock barrier, at alkaline pH. Alternatively, the cerium remobilization, possibly as a carbonate-fluoride complex, could be due to an Eh decrease, favoured by a rise of the groundwater level. (C) 1997 Elsevier Science B.V

The Eastern boundary of the giant karst of Vaucluse in relation to the lineament-fault of Aix-en-Provence (Provence, Alps, Cote d'Azur Region, France), 1997, Rousset C. ,
In the Saint-Donat area, along the Mardaric stream, a tributary of the mid Durance, water losses associated with temporary springs can be observed. These springs run off overflows of the Vaucluse karstic system. Their impluvium extends over the limestones of the eastern part of the Montagne de Lure; this karstic area contributes, with the runoff entering into the losses, to the underground flows of the Fontaine de Vaucluse. As it rose eastwards, the drainage network of this giant karst was halted by the faults of the Aix-en-Provence lineament, in which very strongly deepening marls form a barrier around the aquifer. This is new evidence of the part played by the Hercynian-inherited lineament framework in limiting giant karsts of the Vaucluse-type, as is the case for the Alpine carbonate platforms in which they have developed

Isolated carbonate platform of Caniego, Spain: A test of the latest Albian worldwide sea-level changes, 1997, Fernandezmendiola Pa, Garciamondejar J,
The upper Albian Caniego carbonate platform consists of a 20-m-thick unit of rudist- and coral-bearing limestones that crops out at the northern margin of the Mena diapir in northern Spain, The limestones were deposited on top of a slowly subsiding area, the Mena paleohigh, a diapiric-induced horst bounded by synsedimentary faults, The Caniego limestones originated in shallow warm tropical waters following a widespread marine transgression at the base of the foraminifera Rotalipora appenninica zone (ammonite Stoliczkaia dispar zone), Around the middle part of the appenninica zone the Caniego limestones underwent subaerial exposure and karst development, Fibrous calcite cements filled the bulk of the fissure-dike and dissolution cavities, Field, petrological, and geochemical data indicate that the fibrous calcites are meteoric flowstones, delta(18)O values in these cements range from -3 parts per thousand to -4.5 parts per thousand and delta(13)C values range from -7 parts per thousand to -14 parts per thousand (relative to the Peedee belemnite [PDB] standard), Thick wedges of nearshore shallow-marine siliciclastic sediments were deposited in paleotrough areas surrounding the Caniego paleohigh while the platform was subaerially exposed, The carbonate platform was drowned in early Cenomanian time and hardground-condensed facies developed during this period (Rotalipora brotzeni zone), Deeper water noncondensed marry sedimentation was reestablished in the mid-Cenomanian (Rotalipora reicheli zone), Comparison of the Iberian Caniego limestones with worldwide successions suggests a coincidence in the timing of platform formation emergence and drowning in several basins of different lithospheric plates, Nevertheless, an overall lack of coordination of sea-level histories from different basins may be related to tectonic movements of the lithospheric plates, Plate rearrangement is invoked as the primary control on relative sea-level changes and sequence development

Platform-top and ramp deposits of the Tonasa Carbonate Platform, Sulawesi, Indonesia, 1997, Wilson M. E. J. , Bosence D. W. J. ,
This study presents a detailed facies analysis of shallow-water platform and ramp deposits of an extensive Tertiary carbonate platform. Temporal and spatial variations have been used to construct a palaeogeographic reconstruction of the platform and to evaluate controls on carbonate sedimentation The late Eocene to mid-Miocene shallow-water and outer ramp/basinal deposits of the Tonasa Carbonate Platform, from the Pangkajene and Jeneponto areas of South Sulawesi respectively, formed initially as a transgressive sequence in a probable backarc setting. The platform was dominated by foraminifera and had a ramp-type southern margin. Facies belts on the platform trend east-west and their position remained remarkably stable through time indicating aggradation of the platform-top. In comparison outer ramp deposits prograded southwards at intervals into basinal marls. Tectonics, in the form of subsidence, was the dominant control on accommodation space on the Tonasa Carbonate Platform. The location of barriers' and the resultant deflection of cross-platform currents, together with the nature of carbonate producing organisms also affected sedimentation, whilst eustatic or autocyclic effects are difficult to differentiate from the affects of tectonic tilting. Moderate- to high-energy platform top or redeposited carbonate facies may form effective hydrocarbon reservoirs in otherwise tight foraminifera dominated carbonates, which occur widely in SE Asia, and have not been affected by extensive porosity occlusion

Groundwater circulation and geochemistry of a karstified bank-marginal fracture system, South Andros Island, Bahamas, 1997, Whitaker Fiona F. , Smart Peter L. ,
On the east coast of South Andros Island, Bahamas, a major bank-marginal fracture system characterised by vertically extensive cavern systems (blue holes) is developed sub-parallel to the steep-sided deep-water re-entrant of the Tongue of the Ocean. In addition to providing a discharge route for meteoric, mixed and geochemically evolved saline groundwaters, a strong local circulation occurs along the fracture system. This generates enhanced vertical mixing within voids of the fracture system, evidenced by the increasing mixing zone thickness, and the thinning and increasing salinity of brackish lens waters from north to south along the fracture system. Furthermore, tidally driven pumping of groundwaters occurs between the fracture and adjacent carbonate aquifer affecting a zone up to 200 m either side of the fracture.The resultant mixing of groundwaters of contrasting salinity and within and along the fracture system and with the surrounding aquifer waters, together with bacterial oxidation of organic matter, generates significant potential for locally enhanced diagenesis. Undersaturation with respect to calcite within the fresh (or brackish)-salt water mixing zone is observed in the fracture system and predicted in the adjacent aquifer, while mixing between the brackish fracture lens and surrounding high fresh waters causes dissolution of aragonite but not calcite. The latter gives rise to considerable secondary porosity development, because active tidal pumping ensures continued renewal of dissolutional potential. This is evidenced by calcium and strontium enrichment in the brackish lens which indicates porosity generation by aragonite dissolution at a maximum rate of 0.35% ka-1, up to twice the average estimated for the fresh water lens. In contrast saline groundwaters are depleted in calcium relative to open ocean waters suggesting the formation of calcite cements.The development of a major laterally continuous cavernous fracture zone along the margin of the carbonate platform permits enhanced groundwater flow and mixing which may result in generation of a diagenetic `halo' at a scale larger than that generally recognised around syn-sedimentary fractures in fossil carbonates. This may be characterised by increased secondary porosity where a relative fall in sea-level results in exposure and formation of a meteoric groundwater system, or cementation by `marine' calcite both below this meteoric system, and where the bank surface is flooded by seawater

Fluid flow through carbonate platforms: constraints from 234U/238U and Cl- in Bahamas pore-waters., 1998, Henderson Gideon M.

An overview of the geology of the Transvaal Supergroup dolomites (South Africa), 1998, Eriksson Pg, Altermann W,
In the Neoarchaean intracratonic basin of the Kaapvaal craton, between approximately 2640 Ma and 2516 Ma, two successive stromatolitic carbonate platforms developed. Deposition started with the Schmidtsdrif Subgroup, which is probably oldest in the southwestern part of the basin, and which contains stromatolitic carbonates, siliciclastic sediments and minor lava flows. Subsequently, the Nauga formation carbonates were deposited on peritidal flats located to the southwest and were drowned during a transgression of the Transvaal Supergroup epeiric sea, around 2550 Ma ago. This transgression led to the development of a carbonate platform in the areas of the preserved Transvaal and Griqualand West basins, which persisted for 30-50 Ma. During this time, shales were deposited over the Nauga Formation carbonates in the south-western portion of the epeiric sea. S subsequent period of basin subsidence led to drowning of the stromatolitic platform and to sedimentation of chemical, iron-rich silica precipitates of the banded iron formations (BIF) over the entire basin. Carbonate precipitation in the Archaean was largely due to chemical and lesser biogenic processes, with stromatolites and ocean water composition playing an important role. The stromatolitic carbonates in the preserved Griqualand West and Transvaal basins are subdivided into several formations, based on the depositional facies, reflected by stromatolite morphology, and on a intraformational unconformities; interbedded tuffs and available radiometric age data do not ye permit detailed correlation of units from the two basins. Thorough dolomitisation of most formations took place at different post-depositional stages, but mainly during early diagenesis. Partial silification was the result of diagenetic and weathering processes. Karstification of the carbonate rocks was related to periods of exposure to subaerial conditions and to percolation of groundwater. Such periods occurred locally at the time of carbonate and BIF deposition. Main karstification, however, probably took place during an erosional period between approximately 2430 Ma and 2320 Ma

Results 1 to 15 of 65
You probably didn't submit anything to search for