Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That meltwater is water derived from the melting of snow pack or of a glacier [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carbonate reservoirs (Keyword) returned 26 results for the whole karstbase:
Showing 1 to 15 of 26
Paleokarsts in late Precambrian and Ordovician carbonates, Kalpin-Shaya uplift zone, Tarim basin, China, 1999, Cao Hs, Yang Jd, Wang Dn,
The reservoir properties in the Kalpin-Shaya uplift zone, Tarim basin, are a common concern with regards to petroleum exploration and reservoir evaluation alike. Dissolution and paleokarst have a positive impact on the porosity as well as the storage capacity of carbonate reservoirs because the secondary porosity related to dissolution and paleokarst serves as excellent traps for migrating hydrocarbons. In order to evaluate the reservoir characteristics reasonably in the late Precambrian and Ordovician carbonate rocks, the secondary porosity, which was produced by dissolution and paleokarstification in late diagenetic stage. should be studied because the primary pores were mostly destroyed during the early-middle diagenesis due to serious compaction and multi-cementation. Carbonate rocks ate among the most important collectors of oil and gas accumulations in the world Important oil and gas reservoirs in paleokarst-containing carbonate rocks are known worldwide because micropores and megapores, such as solution openings, solution fissures, funnels, sinkholes. and caves, serve as the fundamentally important secondary porosity in those rocks. Several wells revealed that the Kalpin-Shaya region is a prospective target for oil and gas exploration. The reservoir carbonates of the Kalpin-Shaya uplift zone in the northern Tarim include dolomites and limestones. The best dolomite reservoirs are in the late Precambrian Qigebulake Formation (Z(2)(2)), the lower Qiulitage Group (is an element of(2-3)), the upper Qiulitage Group (O-1(1)), smd the Xiaoerbulake Formation (is an element of(1)), whereas limestone reservoirs are in the middle-upper formations of the upper Qiulitage Group (O-1(2-3)). On the basis of the study of petrology, paleontology, and stratigraphy from field work and well core data, the pore spaces within the Precambrian and Ordovician carbonate reservoirs are studied with the aim of proving that all secondary pores are controlled by dissolution and paleokarst

Origin and attributes of paleocave carbonate reservoirs, 1999, Loucks R. G.
Paleocave systems form an important class of carbonate reservoirs that are products of near-surface karst processes and later burial compaction and diagenesisOrigins of fractures, breccias, sediment fills and other features associated with paleocave reservoirs have been studied in modem and ancient cave systemsInformation about such cave systems can be used to reconstruct the general evolution of paleocave reservoirs and understand their associated scale, pore networks, and spatial complexities

Characteristics and genetic analysis of the deep-buried weathered-crust karst hydrocarbon reservoirs of the Lower Paleozoic group in the Tarim basin, 2002, Gu J. Y. , Zhang X. Y. , Fang H. ,
The genetic analysis of the deep-buried reservoirs of the Lower Paleozoic carbonate rocks in the Tarim basin is a difficult task involving many factors. Firstly, the object of study is carbonate rocks, which have undergone a long term of modification. Secondly, the rocks are deeply buried with depths of 3800-7000 m in the Tarim basin. The primary reservoir properties formed in the deposition have been strongly modified during the deep burial process. Concurrently, the different burial depths in different areas result in diversities of burial temperature, pressure, underground water, hydrochemistry and various physicochemical changes, which further lead to differences in the diagenetic type, diagenetic property, diagenetic degree and their impacts on the reservoir properties. The Lower Paleozoic Cambrian and Ordovician carbonate reservoirs in the Tarim basin can be grouped into four types,.i.e., paleo-weathered-crust reservoirs, reef reservoirs, buried karst reservoirs and dolomite reservoirs. This paper presents a detailed discussion on the vertical and horizontal distribution characteristics, morphological division, reservoir properties and the efficiency in accumulating hydrocarbons of the paleo-weathered-crust type. Furthermore, its genesis is also analyzed. We proposed that the composition of the carbonate rocks, the tectonic movement with associated fractures and fissures, the paleomorphology and paleoclimate, the sea level fluctuation, and the protection of the pores and fissures by the deep burial diagenesis and burial dissolution are the main factors controlling the formation of the paleo-weathered-crust reservoirs. We also consider that the petroleum exploration of the Lower Paleozoic carbonate rocks should be focused on the paleo-weathered-crust reservoirs

Origin, evolution and residence time of saline thermal fluids (Balaruc springs, southern France): implications for fluid transfer across the continental shelf, 2002, Aquilina L, Ladouche B, Doerfliger N, Seidel Jl, Bakalowicz M, Dupuy C, Le Strat P,
Thermal fluids in the Balaruc-les-Bains peninsula, on the northeastern edge of the Than lagoon (southern France), supply the third largest spa in France. These thermal fluids interact with karst water in the Upper Jurassic aquifer composed of limestone and dolomite, forming two massifs to the east and north of the lagoon. These calcareous formations extend under the western end of the Than lagoon. Geochemical and isotope analyses were carried out in 1996 and 1998 on the thermal wells of the Balaruc-les-Bains peninsula to determine the origin of the thermal fluids and their interaction with subsurface karst water. The thermal fluids are a mixture of karst water and water of marine origin. H-3 and NO3 concentrations show that the proportion of present-day karst water in certain thermal wells is small (<5%), thus enabling us to define a 'pure' thermal end-member. The thermal end-member is itself a mixture of seawater and meteoric paleowater. Ca and Sr concentrations indicate a lengthy interaction with the carbonate substratum of the deep reservoir. Sr isotope signatures are very homogeneous and associated mainly with the dissolution of Jurassic carbonate, but also to evaporitic minerals. delta(13)C contents indicate that this dissolution is linked to deep inflow of CO2. Sr-87, trace element and rare earth element (REE) concentrations indicate that there is also a component, with a systematically minor participation, whose origin is deeper than the Jurassic carbonate and attributed to the Triassic and/or to the crystalline basement. Cl-36 concentrations are extremely low, indicating a residence time of around a hundred thousand years. The outflow temperature of the thermal fluids reaches 50 degreesC, and geothermometers indicate a reservoir temperature of around 80-100 degreesC, locating this aquifer at a depth of between 2000 and 2500 m. The geometry of the geological formations indicates a thrust plane associated with major basement faulting that separates the two calcareous massifs and seems to control the rise of deep thermal fluids from the Jurassic carbonate reservoirs and the participation of a deeper component from the basement and/or the Triassic. The present study shows that seawater can infiltrate at great depths and reside for long periods of time compared to the subsurface groundwater cycle. Compared to other highly saline fluids encountered in basement zones, these waters have a relatively well-preserved marine signature, probably due to the carbonate nature of the aquifer in which the fluids resided and their short residence time. (C) 2002 Elsevier Science B.V. All rights reserved

Origin, evolution and residence time of saline thermal fluids (Balaruc springs, southern France): implications for fluid transfer across the continental shelf, 2002, Aquilina L. Ladouche B. Doerfliger N. , Seidel J. L. , Bakalowicz M. , Dupuy C. , Le Strat P.

Thermal fluids in the Balaruc-les-Bains peninsula, on the northeastern edge of the Thau lagoon (southern France), supply the third largest spa in France. These thermal fluids interact with karst water in the Upper Jurassic aquifer composed of limestone and dolomite, forming two massifs to the east and north of the lagoon. These calcareous formations extend under the western end of the Thau lagoon. Geochemical and isotope analyses were carried out in 1996 and 1998 on the thermal wells of the Balaruc-les-Bains peninsula to determine the origin of the thermal fluids and their interaction with subsurface karst water. The thermal fluids are a mixture of karst water and water of marine origin. 3H and NO3 concentrations show that the proportion of present-day karst water in certain thermal wells is small ( < 5%), thus enabling us to define a ‘‘pure’’ thermal end-member. The thermal end-member is itself a mixture of seawater and meteoric paleowater. Ca and Sr concentrations indicate a lengthy interaction with the carbonate substratum of the deep reservoir. Sr isotope signatures are very homogeneous and associated mainly with the dissolution of Jurassic carbonate, but also to evaporitic minerals. y13C contents indicate that this dissolution is linked to deep inflow of CO2. 87Sr, trace element and rare earth element (REE) concentrations indicate that there is also a component, with a systematically minor participation, whose origin is deeper than the Jurassic carbonate and attributed to the Triassic and/or to the crystalline basement. 36Cl concentrations are extremely low, indicating a residence time of around a hundred thousand years. The outflow temperature of the thermal fluids reaches 50 jC, and geothermometers indicate a reservoir temperature of around 80–100 jC, locating this aquifer at a depth of between 2000 and 2500 m. The geometry of the geological formations indicates a thrust plane associated with major basement faulting that separates the two calcareous massifs and seems to control the rise of deep thermal fluids from the Jurassic carbonate reservoirs and the participation of a deeper component from the basement and/or the Triassic. The present study shows that seawater can infiltrate at great depths and reside for long periods of time compared to the subsurface groundwater cycle. Compared to other highly saline fluids encountered in basement zones, these waters have a relatively well-preserved marine signature, probably due to the carbonate nature of the aquifer in which the fluids resided and their short residence time.


Integrated seismic analysis of carbonate reservoirs: From the framework to the volume attributes, 2003, Sarg J. F. , Schuelke James S. ,

Discrimination of effective from ineffective porosity in heterogeneous Cretaceous carbonates, Al Ghubar field, Oman , 2003, Smith L. B. , Eberli G. P. , Masaferro J. L. , Aldhahab S.

The Natih E heavy-oil reservoir (21j API) atAl Ghubar field, Oman has produced less than 5% of the calculated oil in place. Porosity logs used to calculate reserves show high porosity throughout the reservoir, but further analysis of the only continuous core taken from the field indicates that much of the porosity is ineffective. There are four heavily oil-stained, high-permeability skeletalpelletal grainstone units with interparticle porosity in the core that probably contributed most of the production. The four permeable grainstone units occur at the top of small-scale accommodation cycles that have wackestone and packstone bases. These grainstones make up about 20% of the total thickness of the porous Natih E reservoir. The other 80% is composed of packstone and wackestone with ineffective microporosity, interparticle porosity in burrows, and isolated moldic and intraskeletal porosity. The small-scale reservoirbearing cycles can be correlated across the field using the separation between the medium and deep induction curves as a guide. Resistivity logs are the most reliable tool to distinguish effective from ineffective porosity. Most high-permeability grainstone units have deep induction values more than 100 ohmmand separation of more than 10 ohm m between the medium and deep induction curves. The ineffective intervals with microporosity, burrow porosity, and moldic porosity have lower resistivity and little separation between the medium and deep induction curves 


Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming, 2004, Westphal H. , Eberli G. P. , Smith L. B. , Grammer G. M. , Kislak J.

Significant heterogeneity in petrophysical properties, including variations in porosity and permeability, are well documented from carbonate systems. These variations in physical properties are typically influenced by original facies heterogeneity, the early diagenetic environment, and later stage diagenetic overprint. The heterogeneities in the Mississippian Madison Formation in the Wind River basin of Wyoming are a complex interplay between these three factors whereby differences from the facies arrangement are first reduced by pervasive dolomitization, but late-stage hydrothermal diagenesis introduces additional heterogeneity. The dolomitized portions of theMadison Formation formhighly productive gas reservoirs at Madden Deep field with typical initial production rates in excess of 50 MMCFGD. In the study area, the Madison Formation is composed of four third-order depositional sequences that contain several small-scale, higher frequency cycles. The cycles and sequences display a facies partitioning with mudstone to wackestone units in the transgressive portion and skeletal and oolitic packstone and grainstone in the regressive portions. The grainstone packages are amalgamated tidally influenced skeletal and oolitic shoals that cover the entire study area. The basal three sequences are completely dolomitized, whereas the fourth sequence is limestone. The distribution of petrophysical properties in the system is influenced only in a limited manner by the smaller scale stratigraphic architecture. Porosity and permeability are controlled by the sequence-scale stratigraphic units, where uniform facies belts and pervasive dolomitization result in flow units that are basically tied to third-order depositional sequences with a thickness of 65– 100 ft (20–30 m). The best reservoir rocks are found in regressive, coarse-grained dolomites of the lower two sequences. Although the amalgamated shoal facies is heterogeneous, dolomitization decompartmentalized these cycles. Fine-grained sediments in the basal transgressive parts of these sequences, along with caliche and chert layers on top of the underlying sequences, are responsible for a decrease of porosity toward the sequence boundaries and potential flow separation. Good reservoir quality is also found in the third sequence, which is composed of dolomitized carbonate mud. However, reservoir-quality predictions in these dolomudstones are complicated by several phases of brecciation. The most influential of these brecciations is hydrothermal in origin and partly shattered the entire unit. The breccia is healed by calcite that isolates individual dolomite clasts. As a result, the permeability decreases in zones of brecciation. The late-stage calcite cementation related to the hydrothermal activity is the most important factor to create reservoir heterogeneity in the uniform third sequence, but it is also influential in the grainstone units of the first two sequences. In these sequences, the calcifying fluids invade the dolomite and partly occlude the interparticle porosity and decrease permeability to create heterogeneity in a rock in which the pervasive dolomitization previously reduced much of the influence of facies heterogeneity 


Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction, 2006, Smith L. B. Jr. , Davies G. R.

Structurally controlled hydrothermal dolomite reservoir facies: An overview, 2006, Davies G. R. , Smith Jr. L. B.

Structurally controlled hydrothermal dolomite (HTD) reservoir facies and associated productive leached limestones are major hydrocarbon producers in North America and are receiving increased exploration attention globally. They include multiple trends in the Ordovician (locally, Silurian and Devonian) of the Michigan, Appalachian, and other basins of eastern Canada and the United States, and in the Devonian and Mississippian of the Western Canada sedimentary basin. They also occur in Jurassic hosts along rifted Atlantic margins, in the Jurassic–Cretaceous of the Arabian Gulf region and elsewhere. Hydrothermal dolomitization is defined as dolomitization occurring under burial conditions, commonly at shallow depths, by fluids (typically very saline) with temperature and pressure (T and P) higher than the ambient T and P of the host formation. The latter commonly is limestone. Proof of a hydrothermal origin for HTD reservoir facies requires integration of burial-thermal history plots, fluidinclusion temperature data, and constraints on timing of emplacement. Hydrothermal dolomite reservoir facies are part of a spectrum of hydrothermal mineral deposits that include sedimentary-exhalative lead-zinc ore bodies and HTD-hostedMississippi Valley–type sulfide deposits. All three hydrothermal deposits show a strong structural control by extensional and/or strike-slip (wrench) faults, with fluid flowtypically focused at transtensional and dilational structural sites and in the hanging wall. Transtensional sags above negative flower structures on wrench faults are favored drilling sites for HTD reservoir facies. Saddle dolomite in both replacive and void-fillingmodes is characteristic of HTD facies. For many reservoirs, matrix-replacive dolomite and saddle dolomite appear to have formed near-contemporaneously and from the same fluid and temperature conditions. The original host facies exerts a major influence on the lateral extent of dolomitization, resultant textures, pore type, and pore volume. Breccias zebra fabrics, shear microfractures, and other rock characteristics record short-term shear stress and pore-fluid-pressure transients, particularly proximal to active faults. High-temperature hydrothermal pulses may alter kerogen in host limestones, a process designated ‘‘forced maturation.’’ basement highs, underlying sandstone (and/ or carbonate?) aquifers (probably overpressured), and overlying and internal shale seals and aquitards also may constrain or influence HTD emplacement. Although many questions and uncertainties remain, particularly in terms of Mg and brine source and mass balance, recognition and active exploration of the HTD play continues to expand. Increasing use of three-dimensional seismic imagery and seismic anomaly mapping, combined with horizontal drilling oblique to linear trends defined by structural sags, helps to reduce risk 


Origin and reservoir characteristics of Upper Ordovician TrentonBlack River hydrothermal dolomite reservoirs in New York , 2006, Smith, Jr. , L. B.

In the past decade, more than 20 new natural gas fields have been discovered in laterally discontinuous dolomites of the Upper Ordovician Black River Group in south-central New York. The dolomites form around basement-rooted wrench faults that are detectable on seismic data. Most fields occur in and around elongate faultbounded structural lows interpreted to be negative flower structures. Away from these faults, the formation is composed of impermeable limestone and forms the lateral seal for the reservoirs. In most cases, the faults die out within the overlying Trenton Limestone and Utica Shale. Most porosity occurs in saddle dolomitecoated vugs, breccias, and fractured zones. Matrix porosity is uncommon in the Black River cores described for this study. The patchy distribution around basement-rooted faults and geochemical and fluid-inclusion analyses supports a fault-related hydrothermal origin for the saddle and matrix dolomites. This play went for many years without detection because of its unconventional structural setting (i.e., structural lows versus highs). Using the appropriate integrated structural-stratigraphic-diagenetic model, more hydrothermal dolomite natural gas reservoirs are likely to be discovered in the Black River of New York and in carbonates around the world. 


Three-dimensional seismic-based definition of fault-related porosity development: TrentonBlack River interval, Saybrook, Ohio, 2006, Sagan J. A. , Hart B. S.

Oil and gas reservoirs of the Ordovician Trenton–Black River interval in the Appalachian Basin are commonly associated with fault-related hydrothermal dolomites. However, relationships between porosity development and fault geometry in these fields are poorly documented. In this article, we integrate three-dimensional (3-D) seismic and wire-line data from the Trenton–Black River interval at Saybrook field in northeastern Ohio to study relationships between faulting and porosity development there. Faults were mapped using a combination of amplitude and coherency versions of the seismic data, and a 3-D porosity volume was generated for the Trenton–Black River interval by integrating attributes derived from the seismic data with log-based measures of porosity.

The productive trend in the Trenton–Black River interval at Saybrook is controlled by a 3.4-mi (5.5-km)-long, northwest-southeast–oriented basement fault that was probably reactivated during the Taconic orogeny (i.e., Late Ordovician). Strike-slip movement along the fault generated en echelon synthetic shear faults that branch at least 1350 ft (411.5 m) upward into the Trenton–Black River interval. The best porosity is developed in areas between overlapping synthetic shear faults. Antithetic shear faults probably formed at these locations and, when combined with minor dip-slip movement, created conduits for subsequent porosity-generating fluids. Circular collapse structures associated with localized extension between overlapping shear faults are the primary drilling targets, and horizontal wells running parallel to the strike of the fault would have the best chances of intercepting good porosity development.

Justine Sagan obtained her B.Sc. and M.Sc. degrees in the Earth and Planetary Sciences Department at McGill University. The work presented in this article is based on her M.Sc. thesis. She is currently employed by Devon Canada Corporation in Calgary.

 Bruce Hart held positions with the Geological Survey of Canada, Pennsylvania State University, and the New Mexico Bureau of Mines and Mineral Resources prior to joining McGill University in 2000. His research focuses on the integration of three-dimensional seismic and other data types for reservoir characterization programs. He has been an associate editor of the AAPG


Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming , 2006, Katz D. A. , Eberli G. P. , Swart P. K. , Smith Jr. L. B.

The Mississippian Madison Formation contains abundant fracture zones and breccias that are hydrothermal in origin based on their morphology, distribution, and geochemical signature. The hydrothermal activity is related to crustal shortening during the Laramide orogeny. Brecciation is accompanied by dedolomitization, late-stage calcite precipitation, and porosity occlusion, especially in outcrop dolomites. The tectonic-hydrothermal late-stage calcite reduces permeability in outcrops and, potentially, high-quality subsurface reservoir rocks of the subsurface Madison Formation, Bighorn Basin. The reduction of permeability and porosity is increased along the margins of the Bighorn Basin but not predictable at outcrop scale. The destruction of porosity and permeability by hydrothermal activity in the Madison Formation is unique in comparison to studies that document enhanced porosity and permeability and invoke hydrothermal dolomitization models. Hydrothermal breccias from the Owl Creek thrust sheet are classified into four categories based on fracture density, calcite volume, and clast orientation. Shattered breccias dominate the leading edge of the tip of the Owl Creek thrust sheet in the eastern Owl Creek Mountains, where tectonic deformation is greatest, whereas fracture, mosaic, and chaotic breccias occur throughout the Bighorn Basin. The breccias are healed by calcite cements with d18O values ranging between _26.5 and _15.1xPeedee belemnite (PDB), indicating that the cements were derived from isotopically depleted fluids with elevated temperatures. In the chaotic and mosaic breccia types, large rotated and angular clasts of the host rock float in the matrix of coarse and nonzoned late-stage calcite. This appearance, combined with similar d18O values across even large calcite veins, indicates that the calcite precipitated rapidly after brecciation. Values for d13C(_5–12xPDB) from the frontal part of the Owl Creek thrust sheet indicate equilibrium between methane and CO2-bearing fluids at about 180jC. Fluid inclusions from the eastern basin margin show that these cements are in equilibrium with fluids having minimum temperatures between 120 and 140jC and formed from relatively low-salinity fluids, less than 5 wt.% NaCl. Strontium isotope ratios of these hydrothermal fluids are more radiogenic than proposed values for Mississippian seawater, suggesting that the fluids mixed with felsic-rich basement before migrating vertically into the Madison Formation. We envisage that the tectonic-hydrothermal late-stage calcitecemented breccias and fractures originated from undersaturated meteoric ground waters that migrated into the burial environment while dissolving and incorporating Ca2+ and CO3 2_ and radiogenic Sr from the dissolution of the surrounding carbonates and the felsic basement, respectively. In the burial environment, these fluids were heated and mixed with hypersaline brines from deeply buried parts of the basement. Expulsion of these fluids along basementrooted thrust faults into the overlying strata, including the Madison Formation, occurred most likely during shortening episodes of the Laramide orogeny by earthquake-induced rupturing of the host rock. The fluids were injected forcefully and in an explosive manner into the Madison Formation, causing brecciation and fracturing of the host rock, whereas the subsequent and sudden decrease in the partial pressure of CO2 caused the rapid precipitation of calcite cements. The explosive nature of hydrothermal fluid migration ultimately produces heterogeneities in reservoir-quality carbonates. In general, flow units in the Madison Formation are related to sequence boundaries, which create vertical subdivisions in the porous dolomite. The late-stage calcite cement surrounds hydrothermal breccia clasts and invades the dolomite, reducing porosity and permeability of the reservoir-quality rock. As a consequence, horizontal flow barriers and compartments are established that are locally unpredictable in their location and extent and regionally predictable along the margins of the Bighorn Basin. 


Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada, 2006, Wierzbicki R. , Dravis J. J. , Alaasm I. , Harland N.

A large gas reservoir was discovered in the previously unproductive Jurassic-aged Abenaki carbonate margin in 1998. Most of the reservoir porosity is developed in dolostones. These dolostones replaced preexisting wackestones, packstones, and grainstones(?) associated with reefal and adjacent depositional environments. Many dolomites were subsequently recrystallized or dissolved, accounting for much of the preserved secondary porosity. Subsequent fracturing helped enhance reservoir permeabilities. Enhanced petrographic techniques established that dissolution of previously dolomitized fabrics generated much of the secondary porosity in these dolostones. Diffused plane-polarized light revealed relict grains and textures invisible with standard microscopic observations. Petrographic and geochemical observations also confirmed that dissolution occurred under deep-burial conditions after incipient pressure solution. Dissolutionwas not confined to the centers of dolomitized grains, as is commonly seen when remnant calcitic grains dissolve out during the advanced stages of replacement dolomitization. Instead, dissolution was random within relict grains, as isolated dolomite crystals were also variably dissolved. The geochemistry of these dolomites and associated late-stage calcites implied precipitation from basinal hot fluids, as well as hydrothermal fluids. Later diagenetic fluids, either acidic or calcium rich, or perhaps both at different times (based on associated mineralization), seemingly promoted dolomite dissolution. The presence of tectonic fractures and stylolites, helium gas, and faults observed in seismic data implied that dolomitization and subsequent dissolution along the Abenaki platform margin were controlled by reactivated wrench faults tied to basement. On a finer scale, diagenetic fluids moved through fractures and pressuresolution seams. The data collected to date support our contention that the dolomitization and dissolution process, which has created most of the porosity in the Abenaki reservoir, was poststylotization and deeper burial in origin. Given the timing of tectonic activity in the area and its inferred connection to diagenesis, it is probable that at least a part of the diagenetic fluids were hydrothermal in nature 


Outcrop analog for TrentonBlack River hydrothermal dolomite reservoirs, Mohawk Valley, New York , 2006, Slater B. E. , Smith Jr. L. B.

Geochemical analysis and field relations of linear dolomite bodies occurring in outcrop in the Mohawk Valley of New York suggest that the area has undergone a significant faultrelated hydrothermal alteration. The dolomite occurs in the Lower Ordovician Tribes Hill Formation, which is regionally a Lower Ordovician shaley limestone with patchy dolomitization. The outcrop has an en echelon fault, fracture, and fold pattern. A three-dimensional (3-D) ground-penetrating radar (GPR) survey of the quarry floor has helped to map out faults, fractures, anticlines, synclines, and the extent of dolomitization. Most of the dolomitization occurs in fault-bounded synclines or sags flanked by anticlines. The dolomite structures are highly localized, occurring around faults, and are absent away from the faults and fractures. Trenches cut across the outcrop help relate offset along faults to the overall geometry of the dolomitized bodies. Geochemical analysis, although helpful in characterizing the conditions of dolomitization, does not define its origin absolutely. This study uses fluid inclusions, stable isotopes, 3-D GPR, core analysis, and surficial observations, which all show a link between faulting, dolomitization, and other hydrothermal alteration. Although the outcrop is much too small and shallow to act as a producing gas field, it serves as a scaled analog for the Trenton–Black River hydrothermal dolomite reservoirs of eastern United States. It may therefore be studied to help petroleum geologists characterize existing gas plays and prospect future areas of exploration.


Results 1 to 15 of 26
You probably didn't submit anything to search for