Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That well hydrograph is a graph of water level fluctuations in a well [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carbonate sediments (Keyword) returned 11 results for the whole karstbase:
Shallow-marine carbonate facies and facies models, 1985, Tucker M. E. ,
Shallow-marine carbonate sediments occur in three settings: platforms, shelves and ramps. The facies patterns and sequences in these settings are distinctive. However, one type of setting can develop into another through sedimentational or tectonic processes and, in the geologic record, intermediate cases are common. Five major depositional mechanisms affect carbonate sediments, giving predictable facies sequences: (1) tidal flat progradation, (2) shelf-marginal reef progradation, (3) vertical accretion of subtidal carbonates, (4) migration of carbonate sand bodies and (5) resedimentation processes, especially shoreface sands to deeper subtidal environments by storms and off-shelf transport by slumps, debris flows and turbidity currents. Carbonate platforms are regionally extensive environments of shallow subtidal and intertidal sedimentation. Storms are the most important source of energy, moving sediment on to shoreline tidal flats, reworking shoreface sands and transporting them into areas of deeper water. Progradation of tidal flats, producing shallowing upward sequences is the dominant depositional process on platforms. Two basic types of tidal flat are distinguished: an active type, typical of shorelines of low sediment production rates and high meteorologic tidal range, characterized by tidal channels which rework the flats producing grainstone lenses and beds and shell lags, and prominent storm layers; and a passive type in areas of lower meteorologic tidal range and higher sediment production rates, characterized by an absence of channel deposits, much fenestral and cryptalgal peloidal micrite, few storm layers and possibly extensive mixing-zone dolomite. Fluctuations in sea-level strongly affect platform sedimentation. Shelves are relatively narrow depositional environments, characterized by a distinct break of slope at the shelf margin. Reefs and carbonate sand bodies typify the turbulent shelf margin and give way to a shelf lagoon, bordered by tidal flats and/or a beach-barrier system along the shoreline. Marginal reef complexes show a fore-reef--reef core--back reef facies arrangement, where there were organisms capable of producing a solid framework. There have been seven such phases through the Phanerozoic. Reef mounds, equivalent to modern patch reefs, are very variable in faunal composition, size and shape. They occur at shelf margins, but also within shelf lagoons and on platforms and ramps. Four stages of development can be distinguished, from little-solid reef with much skeletal debris through to an evolved reef-lagoon-debris halo system. Shelf-marginal carbonate sand bodies consist of skeletal and oolite grainstones. Windward, leeward and tide-dominated shelf margins have different types of carbonate sand body, giving distinctive facies models. Ramps slope gently from intertidal to basinal depths, with no major change in gradient. Nearshore, inner ramp carbonate sands of beach-barrier-tidal delta complexes and subtidal shoals give way to muddy sands and sandy muds of the outer ramp. The major depositional processes are seaward progradation of the inner sand belt and storm transport of shoreface sand out to the deep ramp. Most shallow-marine carbonate facies are represented throughout the geologic record. However, variations do occur and these are most clearly seen in shelf-margin facies, through the evolutionary pattern of frame-building organisms causing the erratic development of barrier reef complexes. There have been significant variations in the mineralogy of carbonate skeletons, ooids and syn-sedimentary cements through time, reflecting fluctuations in seawater chemistry, but the effect of these is largely in terms of diagenesis rather than facies

SEDIMENT-HOSTED GOLD MINERALIZATION IN THE RATATOTOK DISTRICT, NORTH SULAWESI, INDONESIA, 1994, Turner S. J. , Flindell P. A. , Hendri D. , Hardjana I. , Lauricella P. F. , Lindsay R. P. , Marpaung B. , White G. P. ,
The Ratatotok district in the Minahasa Regency of North Sulawesi, Indonesia is an area of significant gold mineralisation. Gold has been mined in the district since at least the 1850s, and intensively by the Dutch between 1900 and 1921 with a recorded production of 5,060 kg of gold. Newmont began exploring the district in 1986, and has delineated a major sediment-hosted replacement-style deposit at Mesel, and other smaller deposits in an 8 X 5 km area. A total drill-indicated resource of over 60 metric tonnes of gold ( 2 Moz) is reported for Mesel, and three of the smaller deposits. Approximately 80% of this resource is refractory. Silver grades are usually low (< 10 g/t). The Mesel deposit is similar to many Carlin-type deposits in carbonate hostrocks, alteration, geochemical signature and ore mineralogy, but is distinct in tectonic setting. The discovery of replacement-style mineralisation at Mesel, in an impure limestone within a Tertiary island arc environment, demonstrates that deposits with outward characteristics similar to Carlin-type mineralisation are not restricted to a continental setting. Carbonate sediments in the Ratatotok district were deposited in a Late Miocene restricted basin. Later compressional tectonics caused uplift that resulted in karst development in the limestone and erosion of the adjacent volcanic arc with deposition of a thick epiclastic unit. This was followed by intrusion of shallow level pre-mineral andesite into the sequence. Mineralisation at Mesel, and probably elsewhere in the district, is synchronous with the late-stage reactivation of strike-slip faults. Mineralising fluids at Mesel were focussed along steep structures sympathetic to these faults, and trapped below a relatively impermeable andesite cap rock. Hydrothermal fluids caused decalcification of the silty, more permeable carbonate units with the formation of secondary dolomite, deposition of fine arsenian pyrite, silica veinlets and gold. Volume loss due to decalcification and dolomite formation caused collapse brecciation which enhanced fluid flow and further mineralisation. This locally culminated in total decarbonation and deposition of massive silica. Late-stage stibnite occurs in structural zones within the ore deposit, whereas arsenic (as realgar and orpiment) and mercury (as cinnabar) are concentrated on the periphery. Elsewhere in the Ratatotok district, gold mineralisation is restricted to replacement-style mineralisation in permeable zones along limestone-andesite contacts, open-space-filling quartz-calcite veins and stockworks, and residual quartz-clay breccias. The residual breccias are developed in-situ, and are interpreted to form by dissolution of the wallrock limestone from around pre-existing mineralisation. This has resulted in widespread eluvial gold occurrences

ORIGIN OF ENDOGENETIC MICRITE IN KARST TERRAINS - A CASE-STUDY FROM THE CAYMAN ISLANDS, 1995, Jones B. , Kahle C. F. ,
Cavities in the dolostones of the Cayman Formation (Miocene) on Grand Cayman and Cayman Brac commonly contain spar calcite cements and/or a variety of exogenetic (derived from sources external to the bedrock) and endogenetic (derived from sources in the bedrock) internal sediments. Micrite is a common component in many of these internal sediments. The exogenetic micrite, which is typically laminated and commonly contains fragments of marine biota, originated from the nearby shallow lagoons. The endogenetic micrite formed as a residue from the breakdown of spar calcite crystals by etching, as constructive and destructive envelopes developed around spar calcite crystals, by calcification of microbes, by breakdown of calcified filamentous microbes, and by precipitation from pore waters. Once produced, the endogenetic micrite may be transported from its place of origin by water flowing through the cavities. Endogenetic micrite can become mixed with the exogenetic micrite. Subsequently, it is impossible to recognize the origin of individual particles because the particles in endogenetic micrite are morphologically like the particles in exogenetic micrite. Formation of endogenetic micrite is controlled by numerous extrinsic and intrinsic parameters. In the Cayman Formation, for example, most endogenetic micrite is produced by etching of meteoric calcite crystals that formed as a cement in the cavities or by microbial calcification. As a result, the distribution of the endogenetic micrite is ultimately controlled by the distribution of the calcite cement and/or the microbes-factors controlled by numerous other extrinsic variables. Irrespective of the factors involved in its formation, it is apparent that endogenetic micrite can be produced by a variety of processes that are operating in the confines of cavities in karst terrains

Two Ordovician unconformities in North China: Their origins and relationships to regional carbonate-reservoir characteristics, 1997, Liu B. , Wang Y. H. , Qian X. L. ,
The two unconformities developed on the tops of the Lower Ordovician Liangjiashan Formation (UF1) and the Middle Ordovician Majiagou- or Fengfeng Formation (UF2) are essential boundaries that controlled the formation and distribution of the Lower Paleozoic karst-related reservoirs. UF1 and UF2 have been interpreted as representing short-and long-terms of tectonic uplift, respectively, but new evidence led us to conclude that they were created by different original mechanisms and therefore the related reservoirs should be predicted in different ways. UF1 was commonly interpreted as the result of southern upwarping of the basement, but sequence-stratigraphic analysis supports its origin by eustatic sea-level changes. Spatially, the most favorable regional reservoirs controlled by UF1 should be located in the central area of North China, where the carbonate sediments experienced intensive shallow-subsurface dolomitization with following meteoric water leaching. UF2 was created by tectonic event which resulted in an intra-plate downward flexure and subsequent peripheral bulge. In the depression belt of central North China the younger strata (Fengfeng Fm) were protected, but along the bulge meteoric water eroded them. As a result, the potential regional reservoirs related to UF2 are likely to be distributed along the peripheral-uplift belts, especially around the remnant of the Fengfeng Formation. Based on the analysis of these two unconformities, the Early Paleozoic tectono-sedimentary evolution of North China Plate can be largely divided into four stages: (1) the Cambrian Period, characterized by eustatic sea-level rise and tectonic subsidence; (2) early stage of the Early Ordovician, characterized by eustatic-sea-level fall exceeding tectonic subsidence and development of UF1; (3) from the late stage of the Early Ordovician to the Middle Ordovician, featured by eustatic-sea-level rise and slow tectonic subsidence;(4) from the late stage of the Middle Ordovician to the Early Carboniferous, distinguished by vigorous tectonic uplift and development of UF2

A Colour Atlas of Carbonate Sediments and Rocks under the Microscope, 1998, Adams A. E. , Mackenzie W. S.

Book Review: ''Carbonate Sediments and Rocks'' by Colin Braithwaite, pub Whittles (Caithness), 2005, 2005, Waltham A. C.

Silicification of riphean carbonate sediments (Yurubcha-Tokhomo zone, Siberian Craton), 2005, Kuznetsov V. G. , Skobeleva N. M. ,
Types and lateral and vertical distribution of silicification in Riphean (largely dolomitic) rocks of the Yurubcha-Tokhomo zone of the Siberian Craton are discussed. It is shown that quartz and pyroclastic material in sediments were subjected to intense dissolution in a highly alkaline Riphean basin with the release of silica. Rapid and abrupt decrease in alkalinity during hiatus and desiccation periods resulted in the precipitation of dissolved silica and silicification of near-surface sediments. Lateral distribution of silicification was controlled by the redistribution of silica during the pre-Vendian hiatus, when surface waters were filtered through a carbonate massif with the simultaneous karst formation and silica dissolution. In the water discharge area, secondary silica was precipitated owing to changes in pH values and other physicochemical conditions

An environmental model of fluvial tufas in the monsoonal tropics, Barkly karst, northern Australia, 2006, Carthew Kd, Taylor Mp, Drysdale Rn,
Spring-fed streams that deposit tufa (ambient temperature freshwater calcium carbonate deposits) in the tropics of northern Australia are influenced strongly by perennially warm water temperatures, high evaporation rates, and monsoon driven high-magnitude floods. This paper presents an environmental model that will aid interpretation of fossil fluvial tufas throughout monsoonal Australia. In the Barkly karst, northern Australia, tufas form in dam, cascade and pool/waterhole geomorphic environments. Each environment is represented in the morphostratigraphical record by a specific combination of tufa geomorphic units and facies associations. A diverse array of tufa facies is present, including microphytic, larval, calcite raft, macrophytic and allochthonous types. Preservation of particular Barkly karst tufa facies is thought to reflect the strength of monsoonal floods. A strong monsoon is represented by an abundance of flood indicators such as the allochthonous phytoclastic, lithoclastic and intraclastic tufa facies. Conversely, evidence of weak monsoons or a prolonged absence of floods may include oncoids, calcite rafts and thick accumulations of fine carbonate sediments. The history of the Australian monsoon is not fully understood. However, fossil tufa deposits, which record terrestrial climate information, have been preserved throughout northern Australia and hold great potential for reconstructing the region's climate history. Fossil tufa sequences at two Barkly karst sites have been interpreted using the new model. It can be applied to other Barkly karst fossil tufas as well as those in similar environments elsewhere in the world. (c) 2005 Elsevier B.V. All rights reserved

Carbonate Sediments and Rocks by C.R. Braithwaite, Whittles Publishing 2005, {pound}40, hardback, 196pp. ISBN: 1-870325-39-7, 2006, Jones Brian,

THERMOMINERAL WATERS OF INNER DINARIDES KARST, 2012, Milenić, D. , KruniĆ, O. , MilankoviĆ, D.

The Dinarides are the largest continuous karst region in Europe. With regard to a geotectonic view, they are divided into the Outer, Central and Inner Dinarides occupying the territories of Slovenia, Croatia, Bosnia and Herzegovina, Serbia and Montenegro. Numerous occurrences of thermomineral water have been recorded in the Inner Dinarides area. The majority of them are genetically related to carbonate sediments of Mesozoic age. This paper deals with occurrences of thermomineral waters of the Inner Dinarides karst, their quantitative and qualitative characteristics, basic genetic types, the age of karst thermomineral waters of the Inner Dinarides, the available quantities of hydrogeothermalmineral energy, balneological potential and the possibility of rational multi-purpose utilisation. Hydrochemical and isotope methods have been used for the analysis of basic genetic types and age of karst thermomineral waters, while a geothermometer method has been used for the calculation of primary temperatures in water-bearing horizons(geothermal reservoirs) themselves. The carried out research has pointed out that karst thermomineral waters formed in carbonate sediments of Mesozoic age are characterized by temperatures ranging from 15.5oC (Kneina Ilida) to 75oC (Bogatić), being most frequently of a HCO3-Ca, Mg type with neutral to poor alkaline reaction and mineralization below 1 g/l. Karst thermomineral waters of the Inner Dinarides are most frequently related to geothermal systems formed in carbonate sediments covered by rocks of poor water permeability. In case of some thermomineral water occurrences, the mixing of the karst thermomineral waters with those formed in sedimentary basins occurs due to their hydraulic relation, thus it is not possible to determine only one geothermal system in which they are formed. The overall geothermal potential of the thermomineral waters of the Inner Dinarides karst is about 160 MW. In addition to the geothermal aspect, these waters have been widely utilised in balneology, wellness programmes, as well as for the needs of bottling. The level of research activity and with that the way of the utilisation of these waters are various. With regard to the number of occurrences known so far and their potential, it can be claimed with certainty, that the utilisation of thermomineral water occurring in the karst of the Inner Dinarides will increase significantly in future. An example of the multi-purpose utilisation of the Pribojska Banja Spa thermomineral waters illustrates a possible way of doing it.


Thermomineral waters of inner Dinarides Karst, 2012, Milenić, Dejan, Krunić, Olivera, Milanković, Djuro

The Dinarides are the largest continuous karst region in Europe. With regard to a geotectonic view, they are divided into the Outer, Central and Inner Dinarides occupying the territories of Slovenia, Croatia, Bosnia and Herzegovina, Serbia and Montenegro. Numerous occurrences of thermomineral water have been recorded in the Inner Dinarides area. The majority of them are genetically related to carbonate sediments of Mesozoic age. This paper deals with occurrences of thermomineral waters of the Inner Dinarides karst, their quantitative and qualitative characteristics, basic genetic types, the age of karst thermomineral waters of the Inner Dinarides, the available quantities of hydrogeothermalmineral energy, balneological potential and the possibility of rational multi-purpose utilisation. Hydrochemical and isotope methods have been used for the analysis of basic genetic types and age of karst thermomineral waters, while a geothermometer method has been used for the calculation of primary temperatures in water-bearing horizons(geothermal reservoirs) themselves. The carried out research has pointed out that karst thermomineral waters formed in carbonate sediments of Mesozoic age are characterized by temperatures ranging from 15.5oC (Kneina Ilida) to 75oC (Bogatić), being most frequently of a HCO3-Ca, Mg type with neutral to poor alkaline reaction and mineralization below 1 g/l. Karst thermomineral waters of the Inner Dinarides are most frequently related to geothermal systems formed in carbonate sediments covered by rocks of poor water permeability. In case of some thermomineral water occurrences, the mixing of the karst thermomineral waters with those formed in sedimentary basins occurs due to their hydraulic relation, thus it is not possible to determine only one geothermal system in which they are formed. The overall geothermal potential of the thermomineral waters of the Inner Dinarides karst is about 160 MW. In addition to the geothermal aspect, these waters  have been widely utilised in balneology, wellness programmes, as well as for the needs of bottling. The level of research activity and with that the way of the utilisation of these waters are various. With regard to the number of occurrences known so far and their potential, it can be claimed with certainty, that the utilisation of thermomineral water occurring in the karst of the Inner Dinarides will increase significantly in future. An example of the multi-purpose utilisation of the Pribojska Banja Spa thermomineral waters illustrates a possible way of doing it.


Results 1 to 11 of 11
You probably didn't submit anything to search for