Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stress, effective is stress (pressure) that is borne by and transmitted through the grain-to-grain contacts of a deposit, and thus affects its porosity or void ratio and other physical properties. in onedimensional compression, effective stress is the average grain-to-grain load per unit area in a plane normal to the applied stress. at any given depth, the effective stress is the weight (per unit area) of sediments and moisture above the water table, plus the submerged weight (per unit area) of sediments between the water table and the specified depth, plus or minus the seepage stress (hydrodynamic drag) produced by downward or upward components, respectively, of water movement through the saturated sediments above the specified depth. thus, effective stress may be regarded as the algebraic sum of the two body stresses, gravitational stress, and seepage stress. effective stress mal also be regarded as the difference between geostatic and neutral stress [21].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carlsbad-cavern (Keyword) returned 16 results for the whole karstbase:
Showing 1 to 15 of 16
Carlsbad Cavern, 1925, Lee Willis T. ,

Loose Carbonate Accretions from Carlsbad Caverns, New Mexico, 1951, Black Dm,

Cave Pearls in Carlsbad Caverns, 1952, Black Dm,

Aragonite Rafts in Carlsbad Caverns, New Mexico, 1953, Black Dm,

Fossil Deposits under the Entrance of Carlsbad Caverns, 1953, Black Dm,

Chinese Walls of New Cave, Carlsbad Caverns National Park, 1956, Black Dm,

Comparative fabrics of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Caverns, New Mexico, 1976, Folk Rl, Assereto R,

The stable isotopic ratios of drip water, pool water and water vapor collected in remote areas of Carlsbad Cavern, New Mexico, were used to develop a conceptual model of the hydrologic conditions of the cave pools. When considered in terms of open and closed pool systems, the data indicate that the pools in Carlsbad Cavern appear to leak more water than they evaporate. The pools in Carlsbad Cavern range between -43 and -31% in delta-D, -7.4 and -5.9% in delta-O-18, and have EC-values of 365-710 mu-S cm(-1). The water vapor is consistently 80-82% more depleted in D than associated pool water and appears to be under direct isotopic control by the pools. Most of the drip water ranges between -51 and -44% in delta-D, between -8.0 and -6.9% in delta-O-18, and have EC-values of 310-350 mu-S cm(-1), regardless of location of collection in the cave. Drip water collected on popcorn formations (which in this case are formed by evaporation of wall seep) have stable isotopic compositions similar to local pool water; however, they have EC-value of up to 1060 mu-S cm(-1). In addition, a small, closed pool near the Lake of the Clouds has stable isotopic compositions similar to those of the Lake and elevated EC-values of up to 9500 mu-S cm(-1). The degree of stable isotopic enrichment that evaporating waters can obtain in the Cavern is limited by exchange with the water vapor which, in turn, appears to be controlled by the pools

Radon concentrations range from < 185 to 3,515 Bq m-3 throughout Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Concentrations in the entrance passages and areas immediately adjacent to these passages are controlled by outside air temperature and barometric pressure, similar to other Type 2 caves. Most of the cave is developed in three geographic branches beneath the entrance passages; these areas maintain Rn levels independent of surface effects, an indication that Rn levels in deep, complex caves or mines cannot be simply estimated by outside atmospheric parameters. These deeper, more isolated areas are subject to convective ventilation driven by temperature differences along the 477-m vertical extent of the cave. Radon concentrations are used to delineate six microclimate zones (air circulation cells) throughout the cave in conjunction with observed airflow data. Suspected surface connections contribute fresh air to remote cave areas demonstrated by anomalous Rn lows surrounded by higher values, the presence of mammalian skeletal remains, CO2 concentrations and temperatures lower than the cave mean, and associated surficial karst features

Lechuguilla Cave is a deep, extensive, gypsum- and sulfur-bearing hypogenic cave in Carlsbad Caverns National Park, New Mexico, most of which (> 90%) lies more than 300 m beneath the entrance. Located in the arid Guadalupe Mountains, Lechuguilla's remarkable state of preservation is partially due to the locally continuous Yates Formation siltstone that has effectively diverted most vadose water away from the cave. Allocthonous organic input to the cave is therefore very limited, but bacterial and fungal colonization is relatively extensive: (1) Aspergillus sp. fungi and unidentified bacteria are associated with iron-, manganese-, and sulfur-rich encrustations on calcitic folia near the suspected water table 466 m below the entrance; (2) 92 species of fungi in 19 genera have been identified throughout the cave in oligotrophic (nutrient-poor) ''soils'' and pools; (3) cave-air condensate contains unidentified microbes; (4) indigenous chemoheterotrophic Seliberius and Caulobacter bacteria are known from remote pool sites; and (5) at least four genera of heterotrophic bacteria with population densities near 5 x 10(5) colony-forming units (CFU) per gram are present in ceiling-bound deposits of supposedly abiogenic condensation-corrosion residues. Various lines of evidence suggest that autotrophic bacteria are present in the ceiling-bound residues and could act as primary producers in a unique subterranean microbial food chain. The suspected autotrophic bacteria are probably chemolithoautotrophic (CLA), utilizing trace iron, manganese, or sulfur in the limestone and dolomitic bedrock to mechanically (and possibly biochemically) erode the substrate to produce residual floor deposits. Because other major sources of organic matter have not been detected, we suggest that these CLA bacteria are providing requisite organic matter to the known heterotrophic bacteria and fungi in the residues. The cavewide bacterial and fungal distribution, the large volumes of corrosion residues, and the presence of ancient bacterial filaments in unusual calcite speleothems (biothems) attest to the apparent longevity of microbial occupation in this cave

Age and Origin of Carlsbad Cavern and Related Caves from 40Ar/39Ar of Alunite, 1998, Polyak Victor J. , Mcintosh William C. , Ven Necip, Provencio Paula,

Reef margin collapse, gully formation and filling within the Permian Capitan Reef: Carlsbad Caverns, New Mexico, USA, 1999, Harwood G. M. , Kendall A. C. ,
An area of reef margin collapse, gully formation and gully fill sedimentation has been identified and mapped within Left Hand Tunnel, Carlsbad Caverns. It demonstrates that the Capitan Reef did not, at all times, form an unbroken border to the Delaware Basin. Geopetally arranged sediments within cavities from sponge-algal framestones of the reef show that the in situ reef today has a 10 degrees basinwards structural dip. Similar dips in adjacent back-reef sediments, previously considered depositional, probably also have a structural origin. Reoriented geopetal structures have also allowed the identification of a 200-m-wide, 25-m-deep gully within the reef, which has been filled by large (some >15 m), randomly orientated and, in places, overturned blocks and boulders, surrounded by finer reef rubble, breccias and grainstones. Block supply continued throughout gully filling, implying that spalling of reef blocks was a longer term process and was not a by-product of the formation of the gully. Gully initiation was probably the result of a reef front collapse, with a continued instability of the gully bordering reef facies demonstrated by their incipient brecciation and by faults containing synsedimentary fills. Gully filling probably occurred during reef growth, and younger reef has prograded over the gully fill. Blocks contain truncated former aragonite botryoidal cements, indicating early aragonite growth within the in situ reef. In contrast, former high-magnesian calcite rind cements post-date sedimentation within the gully. The morphology of cavern passages is controlled by reef facies variation, with narrower passages cut into the in situ reef and wider passages within the gully fill. Gully fills may also constitute more permeable zones in the subsurface

Trioctahedral smectite is a constituent of Mg-rich carbonate crusts and moonmilks (pasty deposits) in caves of the Guadalupe Mountains of southeastern New Mexico. Energy dispersive X-ray microanalysis of individual crystallites and their aggregates along with the X-ray diffraction analysis indicates that the smectite is probably stevensite. Saponite is likely present in some samples also. The smectite is intimately associated with dolomite crusts and huntite moonmilks in Carlsbad Cavern, Lechuguilla Cave, and other dolostone caves. Clay particles appear as fibers and films, with aggregates comprising decimicron-sized filamentous masses that envelop crystals of dolomite, huntite, and magnesite. The occurrence of smectite is related to the genesis of the Mg-rich carbonate minerals. In water films, progressive evaporation and carbon dioxide loss results in the sequential precipitation of Mg-rich calcite, aragonite, dolomite, huntite, and magnesite. This sequence of carbonate precipitation removes Ca and greatly increases the Mg/Ca ratio in the solutions. Silica is commonly available probably because of high pH conditions, and consequently, smectite forms in the Mg-rich alkaline environment. Along with the Mg-rich carbonate minerals, opal, quartz, and uranyl vanadates may precipitate with the smectite

The influence of bedrock-derived acidity in the development of surface and underground karst: Evidence from the Precambrian carbonates of semi-arid northeastern Brazil, 2003, Auler As, Smart Pl,
Very extensive cave systems are developed in Precambrian Una Group carbonates in the Campo Formoso area, eastern Brazil. In contrast, the area is largely devoid of significant surface karst landforms, as would be expected given its semi-arid climate. The caves in the area display many morphological features characteristic of deep-seated hypogenic caves, such as lack of relationship with the surface, ramiform/network pattern, abrupt variations of passage cross-sections and absence of fluvial sediments, but do not show evidence of vertical passages marking the ascending path of acidic water nor present extensive gypsum or acid clay mineral deposits. Hydrochemical analyses of present-day ground water indicate that oxidation of bedrock sulphide is an active process, and sulphuric acid may be the main agent driving carbonate dissolution in the area. A shallow mode of speleogenesis is thus proposed, in which sulphuric acid produced through the oxidation of sulphide beds within the carbonates controls cave initiation and development. Moreover, the geological situation of the area in an ancient stable passive margin precludes the possibility of deep-seated sources of acidity. Under dry climate, due to the absence of recharge, solutional landforms will be largely subdued in the surface. Hypogenic processes, if present, are likely to predominate, producing a landscape characterized by a marked disparity in the comparative degree of development between surface and underground landforms. Rates of karst landform development have traditionally been analysed through a climatic perspective, runoff being the main controlling factor in promoting karst development. This view needs to be reassessed in the light of the growing awareness of the importance of climate-independent processes related to hypogenic sources of acidity.

Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis, 2004, Engel As, Stern La, Bennett Pc,
The sulfuric acid speleogenesis (SAS) model was introduced in the early 1970s from observations of Lower Kane Cave, Wyoming, and was proposed as a cave-enlargement process due to primarily H2S autoxidation to sulfuric acid and subaerial replacement of carbonate by gypsum. Here we present a reexamination of the SAS type locality in which we make use of uniquely applied geochemical and microbiological methods. Little H2S escapes to the cave atmosphere, or is lost by abiotic autoxidation, and instead the primary H2S loss mechanism is by subaqueous sulfur-oxidizing bacterial communities that consume H2S. Filamentous 'Epsilonproteobacteria' and Gammaproteobacteria, characterized by fluorescence in situ hybridization, colonize carbonate surfaces and generate sulfuric acid as a metabolic byproduct. The bacteria focus carbonate dissolution by locally depressing pH, compared to bulk cave waters near equilibrium or slightly supersaturated with calcite. These findings show that SAS occurs in subaqueous environments and potentially at much greater phreatic depths in carbonate aquifers, thereby offering new insights into the microbial roles in subsurface karstification

Results 1 to 15 of 16
You probably didn't submit anything to search for