Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That consumptive use is the quantity of water used annually by crops or natural vegetation due to transpiration, tissue building, and evaporation from adjacent soil [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for causes (Keyword) returned 126 results for the whole karstbase:
Showing 1 to 15 of 126
Observations on the evolution of caves., 1964, Cavaille Albert
In this note, which results from a paper published in France, the author defines the "karst system" formed by several successive levels, at the heart of a limestone mass: joints of surface feeding, vertical chimneys, galleries which are alternatively dry and full of water according to the season, a network of continually drowned clefts. He then studies modifications in this system resulting from internal causes, corrosion, filling and sedimentation, concretion. Then he shows how this evolution of the karst system may be modified by general conditions: geology, tectonics, geography with the losses, resurgences and the role of surface formations. The deepening of the river level may create a structure of differing levels in the various karst system, but their positioning is always slower than the streams erosion and it comes about later. In any case, the caves in a dried karst system undergo an evolution on their own. Finally, the author gives the definition of the terms used to explain the evolution in the karst system: "embryonic galleries" in the network of clefts, "young galleries" in the zone which is alternately wet and dry, "mature galleries" where the concretion and the erosion are balanced, "old galleries" where the concretion is becoming more and more important, "dead galleries" where the cave is completely filled by the deposits and concretions. This classification will easily replace the inexact terms of "active galleries" and "fossilized galleries" which are too vague and lead to confusion.

An analytical study of air circulation in caves, 1968, Cigna Arrigo A.
The different types of air circulation in caves are classified according to the origin of the circulation, as either static or dynamic. In a cave static causes are: (a) differences between inside and outside air density owing to: (i) air temperature; (ii) relative humidity; (iii) chemical composition; (b) atmospheric pressure variation. Dynamic causes are: (a) moving fluids: (i) inside the cave; (ii) outside the cave. Whenever possible the above mentioned phenomena have been considered from a mathematical point of view in order to obtain equations relating the different quantities involved.

An analytical study of air circulation in caves, 1968, Cigna Arrigo A.
The different types of air circulation in caves are classified according to the origin of the circulation, as either static or dynamic. In a cave static causes are: (a) differences between inside and outside air density owing to: (i) air temperature; (ii) relative humidity; (iii) chemical composition; (b) atmospheric pressure variation. Dynamic causes are: (a) moving fluids: (i) inside the cave; (ii) outside the cave. Whenever possible the above mentioned phenomena have been considered from a mathematical point of view in order to obtain equations relating the different quantities involved.

Temperature and relative humidity responses of two Texas cave-adapted Millipedes, Cambala speobia (Cambalida: Cambalidae) and Speodesmus bicornourus (Polydesmida: Vanhoeffeniidae)., 1972, Bull Eddie, Mitchell Robert W.
The temperature and relative humidity preferences and tolerances of two Texas species of cave-adapted millipedes, Cambala speobia (Chamberlin) and Speodesmus bicornourus Causey, were studied. Both species showed gross preferences when tested in gradient chambers for temperatures and relative humidities approximating those of their cave environments. But C. speobia, the less adapted species morphologically, was the more selective of the two species for such conditions. S. bicornourus was far less tolerant of elevated temperatures and reduced relative humidities than was C. speobia. Discussed is a possible reason why a terrestrial troglobite like S. bicornourus would combine intolerance with a lessened ability to perceive those factors to which it is intolerant. Discussed also are the possible causes of the present distribution of Cambala and Speodesmus in the caves of central Texas.

Temperature and relative humidity responses of two Texas cave-adapted Millipedes, Cambala speobia (Cambalida: Cambalidae) and Speodesmus bicornourus (Polydesmida: Vanhoeffeniidae)., 1972, Bull Eddie, Mitchell Robert W.
The temperature and relative humidity preferences and tolerances of two Texas species of cave-adapted millipedes, Cambala speobia (Chamberlin) and Speodesmus bicornourus Causey, were studied. Both species showed gross preferences when tested in gradient chambers for temperatures and relative humidities approximating those of their cave environments. But C. speobia, the less adapted species morphologically, was the more selective of the two species for such conditions. S. bicornourus was far less tolerant of elevated temperatures and reduced relative humidities than was C. speobia. Discussed is a possible reason why a terrestrial troglobite like S. bicornourus would combine intolerance with a lessened ability to perceive those factors to which it is intolerant. Discussed also are the possible causes of the present distribution of Cambala and Speodesmus in the caves of central Texas.

Subsidence problems in route design and construction, 1972, Malkin Alexander Bernard, Wood John Charles,
The paper reviews the main causes of ground subsidence as it affects route design and construction in the United Kingdom. Investigation techniques and remedial measures are discussed in relation to both natural and mining subsidence. In addition to the common occurrence of subsidence problems in the coalfields, emphasis is placed on their presence elsewhere in the country. Natural subsidence problems are associated mainly with carbonate and saliferous rocks but mining activity has taken place at various times at numerous geological horizons for a variety of minerals. Future mining activity is likely to involve fewer minerals but will still be dominated by the coal industry. Experience has shown that the conflicting interests of route planners and mineral operators can usually be resolved by negotiation, accompanied in some cases by compensation

Ecological and evolutive aspects of the communities of temperate and tropical caves: observations on the biological cycles of some species of Ptomaphagus (Coleoptera Catopidae)., 1973, Sbordoni Marina Cobolli, Sbordoni Valerio
Differences between tropical and temperate cave communities are an important topic in the actual biospeleological thinking. Among the most striking differences is the paucity of terrestrial troglobites in tropical caves. This fact may depend on the higher energy input into tropical caves which lessens the selection pressures for energy-economizing troglobite adaptations. Consequently evolutionary rates would be slowed in tropical caves and, in a date group, troglobites would appear later in such caves than in temperate ones with lower energy input. In order to investigate this point the authors studied the degree of adaptation to the cave environment in two species of Mexican Ptomaphagus which, being phylogenetically related, probably descend from the same epigean ancestor. Among these species the first one, P. troglomexicanus Peck, lives in a typical temperate cave (i.e. cold, high altitude cave, with scarce food supply) in the Sierra de Guatemala (Tamaulipas), the other one, P. spelaeus (Bilimek), populates tropical caves (i.e. warm, lowland cave, with rich food supply) in the State of Guerrero. In addition a comparison is made with P. pius Seidlitz, an epigean species from southern Europe. The results show a striking difference between P. troglomexicanus on a side and the other two species. Differences chiefly concern morphological features such as relative antenna length, structural complexity (i.e. the number of sensilla) of the antenna chemioreceptor organs in the 70, 90, 100 segments, degree of reduction of eye, wing and pigmentation and physiological ones such as the length of the life cycle. The possible causes of these differences are discussed. According to the authors these differences appear due to the different selection pressures acting in the two types of caves. In addition a comparison between the "tropical cave" species, P. spelaeus, with the epigean one, P. pius, does not point out the differences that one could expect by the diverse ecology of these species. These observations support the idea that evolutionary rates in cavernicoles are strongly affected by the ecology of the cave, mainly depending on the degree of energy input, and are poorly consistent with the hypothesis that mutations affecting degenerative processes are selectively neutral.

Ecological and evolutive aspects of the communities of temperate and tropical caves: observations on the biological cycles of some species of Ptomaphagus (Coleoptera Catopidae)., 1973, Sbordoni Marina Cobolli, Sbordoni Valerio
Differences between tropical and temperate cave communities are an important topic in the actual biospeleological thinking. Among the most striking differences is the paucity of terrestrial troglobites in tropical caves. This fact may depend on the higher energy input into tropical caves which lessens the selection pressures for energy-economizing troglobite adaptations. Consequently evolutionary rates would be slowed in tropical caves and, in a date group, troglobites would appear later in such caves than in temperate ones with lower energy input. In order to investigate this point the authors studied the degree of adaptation to the cave environment in two species of Mexican Ptomaphagus which, being phylogenetically related, probably descend from the same epigean ancestor. Among these species the first one, P. troglomexicanus Peck, lives in a typical temperate cave (i.e. cold, high altitude cave, with scarce food supply) in the Sierra de Guatemala (Tamaulipas), the other one, P. spelaeus (Bilimek), populates tropical caves (i.e. warm, lowland cave, with rich food supply) in the State of Guerrero. In addition a comparison is made with P. pius Seidlitz, an epigean species from southern Europe. The results show a striking difference between P. troglomexicanus on a side and the other two species. Differences chiefly concern morphological features such as relative antenna length, structural complexity (i.e. the number of sensilla) of the antenna chemioreceptor organs in the 70, 90, 100 segments, degree of reduction of eye, wing and pigmentation and physiological ones such as the length of the life cycle. The possible causes of these differences are discussed. According to the authors these differences appear due to the different selection pressures acting in the two types of caves. In addition a comparison between the "tropical cave" species, P. spelaeus, with the epigean one, P. pius, does not point out the differences that one could expect by the diverse ecology of these species. These observations support the idea that evolutionary rates in cavernicoles are strongly affected by the ecology of the cave, mainly depending on the degree of energy input, and are poorly consistent with the hypothesis that mutations affecting degenerative processes are selectively neutral.

A critical review of hypotheses on the origin of vermiculations., 1978, Bini Alfredo, Gori M. Cavalli, Gori Silvio
Mud and clay vermiculations are irregular and discontinuous deposits of incoherent materials, almost ubiquitous, found both inside and outside of caves, overlying limestone or other materials, they are formed from many substances (clay, mud, candle-black, colloidal silica, etc.) also their shape dimensions vary greatly. The following genetical hypotheses have been proposed: fossil fillings; chemico-genetical deposition; biological formation; mechanical deposition from moving water or air; clay-layer drying process (Montoriol-Pous hypothesis); physicochemical deposition from drying liquid films. The last is proposed by the authors who, having discussed the various hypotheses, give many examples and the results of some experiments. They distinguish two types of vermiculations: Type 1 or negative vermiculations Type II or normal vermiculations. The genesis of type I is explained by the Montoriol-Pous hypothesis; these vermiculations are large and made of clay or other colloidal material, and are due to the gradual drying of a layer of clay or other substance. The last stage of this drying process causes the vermiculations to form in a more or less dried state. The vermiculations of the second type are small and thin, much ramified and always with a clear halo around them. Vermiculations consisting of many materials have been observed, usually as macroscopic aggregates. They are caused by the drying of a liquid film containing suspended colloidal particles. The proposed mechanism provides a good explanation of all the observed characteristics of vermiculations.

Symposium on Exploration Medicine - The causes of caving accidents, 1981, Forder John

Karst development and the distribution of karst drainage systems in Dejiang, Guizhou Province, China, 1983, Song Linhua, Zhang Yaoguang, Fang Jinfu, Gu Zhongxong,
The nature of karstification of two contrasting areas on the north Guizhou Plateau (south China) is shown to be controlled by structure, lithology, geomorphic history and tectonics, and causes significant differences to arise in the subsurface drainage systems of the areas.The Shaqi area lies in a syncline of Permo-Triassic limestones underlain by an insoluble sandy shale which forms the local base level. Karst landforms are strongly influenced by the presence of four erosion levels corresponding to four periods of rejuvenation of the drainage systems. Drainage is concentrated along the syncline axis, and one system (Naoshuiyan) has been pirating another (Lengshuiyan) by headward retreat. Cave passages are typically phreatic.The Dejiang Town area lies in an anticline of Cambrian dolomite and Ordovician limestone. Three large subsurface drainage systems have developed along parallel faults, and have typically vadose cross-sections

Determination of the Causes of Air Flow in Coppermine Cave, Yarrangobilly, 1984, Michie, N. A.

Observations of air flow through Coppermine Cave, Yarrangobilly, are reported. A model is presented of the cave as a two entrance system with air flow dominated by air density differentials with little sensitivity to surface wind. The measurement technique and data analysis are described.


Genetic analysis of evolutionary processes, 1987, Wilkens Horst
Epigean and cave populations of A. fasciatus (Characidae, Pisces) differ in a series of morphological physiological, and ethological features. The interfertility of these populations made possible a genetic analysis of organs characteristic of interspecific divergence. The study of the regressive organs "eye" and "melanophore system" on the one hand and that of the constructively improved "gustatory equipment and feeding behaviour" on the other yielded identical principles of genetic manifestation: (1) All features have a polygenic basis with an at least di- to hexahybrid inheritance. (2) All polygenes have the same amount of expressivity. (3) After recombination of a minimum number of genes, discontinuous distributions (threshold effects) develop. (4) All features are independently inherited. (5) The genes responsible for a feature are unspecific. In the case of the eye this means that no "lens-" or "retinagenes" are analyzed; due to developmentally physiological interdependence within complex structures, only so-called "eye-genes" have as yet been described. Because of the developmentally physiological interdependence of complex organs, the process of reduction proceeds as a diminution in size, that of constructive evolution as enlargement. In both cases different allometric correlations of the single structures can be found. The convergent reduction of eyes in cave animals is caused by the loss of stabilizing selection which normally keeps the eye in its appropriate adapted form. It is not directional selection pressure, like f. ex. energy economy, but mutation pressure that causes eye reduction. By this, random mutations, which are mostly of deleterious character, are accumulated. The principles of regressive evolution are not restricted to the development of cave species. The absence of stabilizing selection regularly occurs during transitional evolutionary phases. These are f. ex. initial stages of speciation which may be observed when biotopes with little or no interspecific competition are colonized by an invader. Genotypic and phenotypic variability now arise and equilibria become punctuated, because stabilizing selection for a specific ecological niche which has once been acquired by the invading species is no longer acting. Examples include the evolution of species flocks in geologically young lakes or oceanic islands. Rapidly increasing variability now secondarily provides the material for directional selection which radiates such species into vacant niches. Genetic threshold effects as described above may accelerate this process. Variability will finally become lower again under the influence of inter- and intraspecific competition. A new equilibrium is attained.

Natural and artificial cavities as ground engineering hazards, 1987, Culshaw Mg, Waltham Ac,
The occurrences of natural and artificial cavities are reviewed and their causes are assessed. Natural cavities are found principally in carbonate rocks and the processes of sinkhole formation are described. Solution cavities in non-carbonate rocks and cavities in insoluble rocks are also considered. Extraction methods for coal, metalliferous minerals and salts are described in relation to the creation of underground cavities. An outline procedure for locating cavities emphasizes the importance of the desk study in this type of investigation and the difficulty of proving the absence of cavities beneath a site

Le karst du gypse du centre de la dpression de l'Ebre (Espagne), 1990, Soriano, M. A.
THE GYPSUM KARST OF THE CENTER OF THE EBRE BASSIN (SPAIN) - The central Ebro basin was filled with evaporitic deposits (gypsum and limestones) during the Miocene. During the Quaternary, several alluvial terrace and pediment levels were developed and they overlay the gypsum deposits. A large number of karstic landforms developed on gypsum have been found. The most important reason is its high solubility. We have found different types of microlandforms. The most important are Rillenkarren, solution pits and micro etching. There are also small tumuli. They are active at present. We have differentiated three macrolandforms: paleocollapses, depressions and alluvial dolines. The paleocollapses are very narrow and deep. They are filled with quaternary materials. They are not active and were generated in the Middle or Upper Pleistocene. The depressions were developed by the gypsum dissolution, together with topographical and geomorphologic factors. They do not seem to be active nowadays. The alluvial dolines are developed on the terrace and pediment deposits, which overlay gypsum materials. There is basin, well and pan-shaped dolines and they are especially frequent in the T2 terrace level. From the study of aerial photographs of different years, the variations in the number and size of dolines and their density have been determined. Natural factors (lithology and fractures), together with human activities (irrigation) are the principal causes in their development.

Results 1 to 15 of 126
You probably didn't submit anything to search for