Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That fracture pattern is the spacial arrangement of a group of fracture surfaces.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for celestite (Keyword) returned 11 results for the whole karstbase:
Well-Drilling Reveals Debris-Filled Caves. Celestite Cave-Deposit Fond in Real County, 1948, Davies, William E.

Origin of major karst-associated celestite mineralization in Karstryggen, central East Greenland, 1990, Scholle Peter A. , Stemmerik Lars, Harpoth Ole,

POST JURASSIC BRITTLE TECTONICS OF THE HAMMAM ZRIBA MINE (NORTHEASTERN TUNISIA) AND RELATED KARST AND FLUORINE, BARYTINE AND CELESTITE OCCURRENCES IN CARBONATE ENVIRONMENTS, 1991, Melki F. , Zargouni F. ,
The Hammam Zriba mine is located in a lenticular horst structure, of varying width (0.3 to 1 km) and NNW-SSE strike over about 3 kms. The mineralization is strata-bound at the top of massive Portlandian limestones and is overlain by embedded Middle to Upper Campanian limestones with marl intercalations. This horst has formed during the late Jurassic as an emerged block bound by major faults that were remobilized later during various deformation stages. These facts are clearly documented by field observations and tectonic analysis essentially along the N160-N180 trending faults in the Portlandian lithofacies. These fractures have also controlled the palaeomorphological framework of the uppermost part of the Portlandian massive facies. The overlying Campanian unit exhibits onlap structures that rest on the irregular eroded karstified and mineralized surface which forms a screen surface for the upward channelized fluids and mineral formations in karst and graben. Fluids were apparently channelized by faults trending N070-N090 and N160-180, a few hundred metres long, that have facilitated karst, dissolution and mineral deposition during tectonic events

Reactivated interstratal karst--example from the Late Silurian rocks of western Lake Erie (U.S.A.), 1992, Carlson Eh,
Interstratal karst developed in the Late Silurian rocks of western Lake Erie that, after a long interruption, was exhumed and reactivated. The dissolution front of the G evaporite of the Salina Group receded in the downdip direction during these two well-documented periods of subaerial exposure. The karst features that developed in the overlying Bass Islands Dolomite (Pridolian) consist of a large tabular body of collapse breccia and a number of smaller features including breccia pipes, partially filled pipes, blister caves and collapse dolines.The tabular breccia body and the breccia pipes, which originated penecontemporaneously during post-Silurian and pre-Middle Devonian subaerial exposure, occur along the updip edge of the present outcrop belt of the dolostone. They are monolithologic, fragment-supported rubble breccias, with the pipes exhibiting a greater fragment displacement, rotation and rounding, and a smaller fragment size. The matrix sediment of the tabular body is a quartz sand, an equivalent of the basal sandstone that filtered down from the erosion surface. The presence in the matrix sediment of nodular celestite, a later replacement of evaporites that formed when the sediment was still soft, indicates that a sabkha environment existed at the time the breccia was infilled. The partially filled pipes, which form cylindrical caves that are lined with late diagenetic celestite, are believed to be cogenetic with the collapse breccias.The blister caves and dolines occur downdip from the breccias, postdating Pleistocene glaciation and predating isostatic rebound. These caves are isolated, crescent- or oval-shaped openings with domed roofs, averaging about 60 m in width and 4 m in height. The hydration and resulting expansion of lenticular bodies of anhydrite along the receding solution front of the G unit is believed to be the cause of doming. The numerous crescentic caves, originating from the dissolution of this gypsum and the subsequent collapse of the domed roofs, are expressed at the surface as shallow dolines

REACTIVATED INTERSTRIATAL KARST EXAMPLE FROM THE LATE SILURIAN ROCKS OF WESTERN LAKE ERIE (USA), 1992, Carlson Eh,
Interstratal karst developed in the Late Silurian rocks of western Lake Erie that, after a long interruption, was exhumed and reactivated. The dissolution front of the G evaporite of the Salina Group receded in the downdip direction during these two well-documented periods of subaerial exposure. The karst features that developed in the overlying Bass Islands Dolomite (Pridolian) consist of a large tabular body of collapse breccia and a number of smaller features including breccia pipes, partially filled pipes, blister caves and collapse dolines. The tabular breccia body and the breccia pipes, which originated penecontemporaneously during post-Silurian and pre-Middle Devonian subaerial exposure, occur along the updip edge of the present outcrop belt of the dolostone. They are monolithologic, fragment-supported rubble breccias, with the pipes exhibiting a greater fragment displacement, rotation and rounding, and a smaller fragment size. The matrix sediment of the tabular body is a quartz sand, an equivalent of the basal sandstone that filtered down from the erosion surface. The presence in the matrix sediment of nodular celestite, a later replacement of evaporites that formed when the sediment was still soft, indicates that a sabkha environment existed at the time the breccia was infilled. The partially filled pipes, which form cylindrical caves that are lined with late diagenetic celestite, are believed to be cogenetic with the collapse breccias. The blister caves and dolines occur downdip from the breccias, postdating Pleistocene glaciation and predating isostatic rebound. These caves are isolated, crescent- or oval-shaped openings with domed roofs, averaging about 60 m in width and 4 m in height. The hydration and resulting expansion of lenticular bodies of anhydrite along the receding solution front of the G unit is believed to be the cause of doming. The numerous crescentic caves, originating from the dissolution of this gypsum and the subsequent collapse of the domed roofs, are expressed at the surface as shallow dolines

DISLOCATION OF THE EVAPORITIC FORMATIONS UNDER TECTONIC AND DISSOLUTION CONTROLS - THE MODEL OF THE DINANTIAN EVAPORITES FROM VARISCAN AREA (NORTHERN FRANCE AND BELGIUM), 1993, Rouchy J. M. , Groessens E. , Laumondais A. ,
Within the Franco-Belgian segment of the Hercynian orogen, two thick Dinantian anhydritic formations are known, respectively in the Saint-Ghislain (765 m) and Epinoy 1 (904 m) wells. Nevertheless, occurrences of widespread extended breccias and of numerous pseudomorphs of gypsum/anhydrite in stratigraphically equivalent carbonate deposits (boreholes and outcrops), suggest a larger extent of the evaporitic conditions (fig. 1, 2). The present distribution of evaporites is controlled by palaeogeographical differentiation and post-depositional parameters such as tectonics and dissolution. These latter have dissected the deposits formerly present in all the structural units. By using depositional, diagenetic and deformational characters of these formations, the article provides a model for the reconstruction of a dislocated evaporitic basin. This segment of the Hercynian chain is schematically composed of two main units (fig. 1, 3) : (1) the autochthonous or parautochthonous deposits of the Namur synclinorium, (2) the Dinant nappe thrusted northward over the synclinorium of Namur. The major thrust surface is underlined by a complex fault bundle (faille du Midi) seismically recognized over more than 100 km. A complex system of thrust slices occurs at the Hercynian front. Except for local Cretaceous deposits, most of the studied area has been submitted to a long period of denudation since the Permian. Sedimentary, faunistic and geochemical data argue for a marine origin of the brines which have generated the evaporites interbedded with marine limestones. Sedimentary structures. - The thick evaporitic formations are composed of calcium-sulfates without any clear evidence of the former presence of more soluble salts (with the exception of a possible carbonate-sulfate breccia in the upper part of the Saint-Ghislain formation). As in all the deeply buried evaporitic formations, the anhydrite is the main sulfate component which displays all the usual facies : pseudomorphs after gypsum (fig. 4A, B), nodular and mosaic (fig. 4C), laminated. The gypsum was probably an important component during the depositional phase despite the predominant nodular pattern of the anhydrite. Early diagenetic nodular anhydrite may have grown during temporary emersion of the carbonates (sabkha environments), but this mechanism cannot explain the formation of the whole anhydrite. So, most of the anhydrite structures result from burial-controlled gypsum --> anhydrite conversion and from mechanical deformations. Moreover, a complex set of diagenetic processes leads to various authigenic minerals (celestite, fluorite, albite, native sulfur, quartz and fibrous silica) and to multistaged carbonate <> sulfate replacements (calcite and dolomite after sulfate, replacive anhydrite as idiomorphic poeciloblasts, veinlets, domino-like or stairstep monocrystals...). These mineral transformations observed ill boreholes and in outcrops have diversely been controlled during the complex evolution of the series as : depositional and diagenetic pore-fluid composition, pressure and temperature changes with burial, bacterial and thermochemical sulfate reduction, deep circulations favored by mechanical brecciation, mechanical stresses, role of groundwater during exhumation of the series. Deformational structures. - A great variety of deformational structures as rotational elongation, stretching, lamination, isoclinal microfolding, augen-like and mylonitic structures are generated by compressive tectonic stresses (fig. 4D to J). The similarities between tectonic-generated structures and sedimentary (lamination) or diagenetic (pseudo-nodules) features could lead lo misinterpretations. The calcareous interbeds have undergone brittle deformation the style and the importance of which depend of their relative thickness. Stretching, boudins, microfolds and augen structures F, H. I) affect the thin layers while thicker beds may be broken as large fractured blocks dragged within flown anhydrite leading to a mylonitic-like structure (fig, 4G). In such an inhomogeneous formation made of interlayered ductile (anhydrite) and brittle (carbonate) beds, the style and the intensity of the deformation vary with respect to the relative thickness of each of these components. Such deformational features of anhydrite may have an ubiquitous significance and can result either from compressive constraints or geostatic movements (halokinesis). Nevertheless, some data evidence a relation with regional tangential stresses: (1) increase of the deformation toward the bottom of the Saint-Ghislain Formation which is marked by a deep karst suggesting the presence of a mechanical discontinuity used as a drain for dissolving solutions (fig. 3, 4); (2) structural setting (reversed series, internal slidings) of the Epinoy 1 formation under the Midi thrust. However, tectonic stresses also induce flowing deformations which have contributed to cause their present discontinuity. It can be assumed that the evaporites played an active role for the buckling of the regional structure as detachment or gliding layers and more specifically for the genesis of duplex structures. Breccia genesis. - Great breccia horizons are widely distributed in outcrops as well as in the subsurface throughout the greater part of the Dinant and Namur units (fig. 2). The wide distribution of pseudomorphosed sulfates in outcrops and the stratigraphical correlation between breccia and Saint-Ghislain evaporitic masses (fig. 2) suggest that some breccia (although not all) have been originated from collapse after evaporites solution. Although some breccia may result from synsedimentary dissolution, studied occurrences show that most of dissolution processes started after the Hercynian deformation and, in some cases, were active until recently : elements made of lithified and fractured limestones (Llandelies quarries) (fig. 5A), preservation of pseudomorphs of late replacive anhydrite (Yves-Gomezee) (fig. 5B, C), deep karst associated with breccia (Douvrain, Saint Ghislain, Ghlin boreholes) (fig. 3, 4, 5D)). Locally, the final brecciation may have been favored by a mechanical fragmentation which controlled water circulations (fig. 5E). As postulated by De Magnee et al. [19861, the dissolution started mostly after the Permian denudation and continued until now in relation with deep circulations and surface weathering (fig. 6). So, the above-mentioned occurrences of the breccia are logically explained by collapse after dissolution of calcium-sulfates interbeds of significant thickness (the presence of salt is not yet demonstrated), but other Visean breccia may have a different origin (fig. 5F). So, these data prove the extension of thick evaporitic beds in all the structural units including the Dinant nappe, before dissolution and deformation. Implications. - Distribution of Visean evaporites in northern France and Belgium is inherited from a complicated paleogeographic, tectonic and post-tectonic history which has strongly modified their former facies, thicknesses and limits (fig. IA, 6). Diversified environments of deposition controlled by both a palaeogeographical differentiation and water level fluctuations led to the deposition of subaqueous (gypsum) or interstitial (gypsum, anhydrite) crystallization. Nevertheless, most of the anhydrite structures can be interpreted as resulting from burial conversion of gypsum to anhydrite rather than a generalized early diagenesis in sabkha-like conditions. Deformation of anhydrite caused by Hercynian tangential stresses and subsequent flow mechanisms, have completed the destruction of depositional and diagenetic features. The tectonic deformations allow us to consider the role of the evaporites in the Hercynian deformations. The evaporites supplied detachment and gliding planes as suggested for the base of the Saint-Ghislain Formation and demonstrated by the structural setting of Epinoy 1 evaporites in reverse position and in a multi-system of thrust-slices below the Midi overthrust (fig. 7). So, although the area in which evaporation and precipitation took place cannot be exactly delineated in geographic extent, all the data evidence that the isolated thick anhydritic deposits represent relics of more widespread evaporites extending more or less throughout the different structural units of this Hercynian segment (fig. 1B). Their present discontinuity results from the combination of a depositional differentiation, mechanical deformations and/or dissolution

New rare cave minerals from the Perolas-Santana karst system (So Paulo State, Brazil), 2000, Forti Paolo, Galli Ermanno, Rossi Antonio
The Perolas-Santana karst system (So Paulo State, Brazil) has been partially studied from the mineralogical point of view. The present paper will contribute to the knowledge of the minerals in these caves, describing the occurrence of euhedral celestite crystals and of a rather rare mineral for a cavern environment: lithiophorite. Thanks to these new discoveries the Perolas-Santana karst system becomes one of the most important in Brazil from a mineralogical point of view. Finally, the result of the chemical analyses carried out on this newly discovered Monoxyhydroxide put in evidence a zonation in the distribution of the different elements which may be related to several subsequent depositional events characterized by solutions with a chemical content variable in time.

Depositional environment for metatyuyamunite and related minerals from Caverns of Sonora, TX (USA), 2001, Onac Bogdan P. , Veni George, White William B. ,
A new mineral association composed of metatyuyamunite, celestite, opal and several minor crystalline phases has been identified in the Caverns of Sonora (Texas). The minerals were identified by means of X-ray diffractometry and optical and scanning electron microscopy. The main component of this association is metatyuyamunite, a uranyl vanadate mineral that appears as aggregates of sub-millimeter platy-like crystals that are often covered by botryoidal opal coatings. The orthorhombic unit cell of the Sonora metatyuyamunite had parameters a = 10.418, b = 8.508, and c = 17.173 A. Opal and celestite formed either directly over the yellow crust or along the cracks that traverse the limy mud on which metatyuyamunite was precipitated. The secondary uranium-vanadium minerals described herein were precipitated in the final stages of cave development

Geological Controls on the Distribution and Origin of Selected Inorganic Ions in Ohio Groundwater, 2002, Levine Norman S. , Roberts Sheila J. , Aring Jennifer L. ,
Contour maps showing the concentration of selected inorganic ions across the state of Ohio illustrate that high concentrations of some ions visually correlate with the location of major geologic features, whereas other ions are randomly distributed. Strontium and sulfate have high concentrations over the Cincinnati, Findlay, and Kankakee arches, where carbonate aquifers containing gypsum and celestite are located. The highest concentrations of potassium and beryllium are located along the Cambridge fault zone, a major structural feature in eastern Ohio. High concentrations of iron and nitrate are found adjacent to single wells. Nitrate highs may be related to anthropogenic contamination, whereas some iron anomalies are located where sulfate is high. The maps produced in this study indicate that statewide contour maps of ion concentrations are useful for correlating aquifer chemistry with the regional geology of an area and determining the background level of ions on a state-wide scale

The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico, 2002, Perry E. , Velazquezoliman G. , Marin L. ,
Based on groundwater geochemistry, stratigraphy, and surficial and tectonic characteristics, the northern Yucatan Peninsula, Mexico, a possible analog for ancient carbonate platforms, is divided into six hydrogeochemical/physiographic regions: (1) Chicxulub Sedimentary Basin, a Tertiary basin within the Chicxulub impact crater; (2) Cenote Ring, a semicircular region of sinkholes; (3) Pockmarked Terrain, a region of mature karst; (4) Ticul fault zone; (5) Holbox Fracture Zone-Xel-Ha Zone; and (6) Evaporite Region. Regional characteristics result from tectonics, rock type, and patterns of sedimentation, erosion, and rainfall. The Cenote Ring, characterized by high groundwater flow, outlines the Chicxulub Basin. Most groundwater approaches saturation in calcite and dolomite but is undersaturated in gypsum. Important groundwater parameters are: SO4/Cl ratios related to seawater mixing and sulfate dissolution; Sr correlation with SO4, and saturation of Lake Chichancanab water with celestite. indicating celestite as a major source of Sr; high Sr in deep water of cenotes, indicating deep circulation and contact of groundwater with evaporite; and correlation of Ca, Mg, and SO4, probably related to gypsum dissolution and dedolomitization. Based on geochemistry we propose: (1) a fault between Lake Chichancanab and Cenote Azul; (2) deep seaward movement of groundwater near Cenote Azul; and (3) contribution of evaporite dissolution to karst development in the Pockmarked Terrain. Chemical erosion by mixing-zone dissolution is important in formation of Estuario Celestun and other estuaries, but is perhaps inhibited at Lake Bacalar where groundwater dissolves gypsum, is high in Ca, low in CO3, and does not become undersaturated in calcite when mixed with seawater

Sulfate Cavity Filling in the Lower Werra Anhydrite (Zechstein, Permian), Zdrada Area, Northern Poland: Evidence for Early Diagenetic Evaporite Paleokarst Formed Under Sedimentary Cover, 2003, Hryniv Sofiya P. , Peryt Tadeusz Marek,
Paleokarst developed in sulfate deposits is common, and it is usually formed along the contact with the overlying permeable rocks or it is due to near-surface dissolution of bedded evaporites. In the Lower Werra Anhydrite (Zechstein) of northern Poland the paleokarst cavities are usually filled by bluish semitransparent anhydrite and more rarely by celestite, polyhalite, halite, and carbonate. In small cavities (a few centimeters across), a rim of rod-like anhydrite crystals arranged in narrow bundles occurs, and the inner part of the cavity is filled with a mosaic aggregate of short prismatic crystals of anhydrite and celestite as well as coarse irregular anhydrite. Celestite crystals and fan-shaped aggregates as well as spherulites of anhydrite are rare. In bigger cavities (some ten centimeters across), multiple zones of fibrous anhydrite are arranged in different directions in the middle part of the cavity fill. The innermost parts of large karst cavities remain hollow in some cases, with the cavity walls encrusted by coarse, well-developed crystals of anhydrite and celestite. The karst cavities in the Lower Werra Anhydrite developed in the subsurface by dissolution of CaSO4 strata in halite-rich intervals due to gypsum dehydration water. During gypsum dehydration, dissolution of that halite would have increased the sodium chloride content of the solution and thus the solubility of calcium sulfate. Dissolved calcium sulfate was removed from a leaching zone by diffusion and/or downward flow in interstitial space, and the minerals in karst cavities precipitated from the same solutions as those solutions became oversaturated because of decreases in NaCl concentration over time. This study suggests that karst in sulfate deposits can develop in the subsurface and without uplift and/or near-surface conditions

Results 1 to 11 of 11
You probably didn't submit anything to search for