Search in KarstBase
![]() |
![]() |
Mullamullang Cave N37 is the longest and most complex cave on the Nullarbor Plain, Southern Australia. Unlike the other caves, it possesses extensive levels of phreatic solution tube passages which permit stronger inferences to be made on the development of the collapse passages constituting the bulk of Mullamullang Cave and other deep Nullarbor caves. These passages have been formed by collapse through overlying belts of solution tube networks along an elongated zone of cavitation in the limestone. Massive breakdown was probably initiated at depth within the zone, at least 50 feet below the present watertable level. Upward stoping of the collapse would have been facilitated by the higher network levels in the zone, such as the Ezam and Easter Extension. Channelling of groundwater flow under the Plain is suggested by the belt-like nature of the networks. An epiphreatic origin is proposed for the network levels though convincing morphological evidence is wanting. Eustatic changes in sea level have been of fundamental importance in the development of the multiple levels. Wetter periods in the past were probably important as little development is taking place under present-day dry conditions. Correlation of wetter periods with Pleistocene glacials would help explain the development of huge collapse passages, but such correlatien cannot be assumed on present evidence. Massive collapse and doline formation were followed by subaerial weathering and vadose activity which modified the cave - especially near the entrance. Correlation of levels in Mullamullang with those in other Nullarbor deep caves is attempted. However, Mullamullang Cave is unique probably due to the lithology of the Abrakurrie Limestone in which it is developed.
The Trobriand group of coral islands is situated a hundred miles off the north-east coast of Papua and north of the D 'Entr'ecasteaux Islands. In previous papers we have described caves on Kiriwina (the main island), Vakuta and Kitava (see References). We now describe caves of Kaileuna and Tuma (see Figures l and 2). In August 1970, we spent one week of intensive search for caves on these two islands, making our headquarters in the copra store in the village of Kadawaga. Kaileuna island is six miles long and almost four miles wide, and supports a population of 1,079 (1969 Census). It is separated from the large island of Kiriwina by a channel two miles wide between Mamamada Point and Boll Point, though the main village of Kadawaga on the west coast of Kaileuna is 18 miles from Losuia and 14 miles from Kaibola. The island is generally swampy in the centre with a rim of uplifted coral around the edge. We were assured that the correct name of the island is Laileula, but since Kaileuna is used on all previous maps it is retained here. However, we prefer Kadawaga to the Kudawaga or Kaduwaga that appear on some maps. The inhabitants are of mixed Melanesian-Polynesian Stock, who are almost totally self-supporting, being in the main farmers and fishermen. The yam (taitu) constitutes the staple crop and the harvest is still gathered in with ceremonies unchanged for centuries. There is great competition among families for the quantity and quality of the crop, which is displayed firstly in garden arbours (kalimonio), later in the village outside the houses; traditionally styled yam huts (bwaima) are then constructed to display the harvest until the next season. The transfer of yams from the garden to the village is occasion for a long procession of gatherers to parade through the village blowing conch shells and chanting traditional airs (sawili) to attract the attention of villagers to the harvesting party, After storage of the harvest, a period of dancing and feasting (milamala) continues for a month or more, Traditional clothing is the rule, Women and girls wear fibre skirts (doba), most of the men, especially the older ones, wear a pubic leaf (vivia) made from the sepal of the betel nut palm flower (Areca catechu Linn.). Tuma, the northernmost of the main islands in the Trobriand group, is six miles long and less than a mile wide. It is a low ridge of coral with swamps in the centre and along much of the western side. The island has been uninhabited since 1963 when the last few residents abandoned it and moved to Kiriwina, but it is still visited from time to time by other islanders who collect copra and fish. Tuma is believed by all Trobriand Islanders to be inhabited now by the spirits of the dead. It is also generally believed that Tuma is the original home of the TrobIiand ancestors; these ancestors are also said to have emerged at Labai Cave on Kiriwina Island, and from many other places of emergence or 'bwala". Lack of consistency in the legends does not appear to concern the Trobrianders very much. The cave maps in this paper are sketches based mainly on estimated dimensions, with a few actual measurements and compass bearings. Bwabwatu was surveyed more accurately, using a 100 ft steel reinforced tape and prismatic compass throughout.
This study was undertaken to gain a better understanding of karst hydrology. To do this, the present day hydrology and the paleohydrology were determined in three karst basins. The basins chosen were the Swago, Locust and Spring Creek basins in Pocahontas and Greenbrier Counties, West Virginia. A number of conventional field techniques were used successfully in this study, including the following: current meter and dye dilution gauging; dye and lycopodium stream tracing; geological and cave mapping; the setting up of stage recorders; geochemistry; and limestone erosion measurements. The climate of the region was investigated to obtain realistic precipitation, temperature and potential evaporation data over the study basins.
It was found that the mean precipitation over two of the basins was 30% higher than recorded data in the valleys. The karst development of the basins was found to take place in four major stages. These were: A) initial surficial flow, B) strike controlled drainage, C) major piracies from one sub-basin to another, and D) shortening of the flow routes. The major controls on the karst development were found to be: A) the Taggard shale, B) the strike direction, which controlled early basin development, and C) the hydraulic gradient from the sink to rising, which controlled later basin development.
To better assess the quantitative hydrology, and to assist in determining the type of unexplorable flow paths, a watershed model was developed. This modelled the streamflow from known climatic inputs using a number of measured or optimized parameters. The simulation model handled snowmelt, interception, infiltration, interflow, baseflow, overland flow, channel routing, and evaporation from the interception, soil water, ground water, snowpack and channel water. The modelled basin could be split up into 20 segments, each with different hydrological characteristics, but a maximum of 3 segments was used in this study.
A total of 29 parameters was used in the model although only 10 (other than those directly measurable) were found to be sensitive in the three basins. The simulated streamflow did not match the real flows very well due to errors in the data input and due to simplifications in the model. It was found, however, that as the proportion of the limestone in a segment increased the overland flow decreased, the interflow increased, the baseflow and interflow recessions were faster, the soil storages were smaller and the infiltration rate was higher, than in segments with a larger proportion of exposed clastics. The flow characteristics of the inaccessible conduits were inferred from the channel routing parameters and it was postulated that the majority of the underground flow in the karst basins was taking place under vadose conditions.
This is the first detailed examination of the karst geomorphology of the Bruce Peninsula. It attempts to review all aspects including pavement phenomena and formation (microkarst features), surface and subsurface karst hydrology (meso to macro scale) and water chemistry. The latter is based on over 250 samples collected in 1973 and 1974.
The dolomite pavement is the best example of its kind that has been described in the literature. It covers much of the northern and eastern parts of the peninsula and can be differentiated into three types based on karren assemblages. Two of these are a product of lithology and the third reflects local environmental controls. The Amabel Formation produces characteristic karren such as rundkarren, hohlkarren, meanderkarren, clint and grike, kamentizas and rillenkarren on glacially abraded biohermal structures. The Guelph Formation develops into a very irregular, often cavernous surface with clint and grike and pitkarren as the only common recognizable karren. The third assemblage is characterized by pitkarren and is found only in the Lake Huron littoral zone. Biological factors are believed to have played a major role in the formation of the pavement. Vegetation supplies humic acids which help boost the solution process and helps to maintain a wet surface. This tends to prolong solution and permit the development of karren with rounded lips and bottoms.
Three types of drainage other than normal surface runoff are found on the Bruce. These are partial underground capture of surface streams, complete underground capture (fluvio-karst), and wholly vertical drainage without stream action (holokarst). Holokarst covers most of the northern and eastern edge of the peninsula along the top of the escarpment. Inland it is replaced by fluvial drainage, some of which has been, or is in the process of being captured. Four perennial streams and one lake disappear into sinkholes. These range from very simple channel capture and resurgence, as shown by a creek east of Wiarton, to more mature and complex cave development of the St. Edmunds cave near Tobermory. Partial underground capture represents the first stage of karst drainage. This was found to occur in one major river well inland of the fluvio-karst and probably occurs in other streams as well. This chapter also examines the possible future karst development of the Bruce and other karst feature such as isolated sinks and sea caves.
The water chemistry presented in Chapter 5 represents the most complete data set from southern Ontario. It is examined on a seasonal basis as well as grouped into classes representing water types (streams, Lake Huron and Georgian Bay, inland lakes, swamps, diffuse springs and conduit springs). The spring analyses are also fitted into climatic models of limestone solution based on data from other regions of North America. It was found that solution rates in southern Ontario are very substantial. Total hardness ranges from 150 to 250 ppm (expressed as CaCO3) in most lakes and streams and up to 326 ppm in springs. These rates compare with more southerly latitudes. The theoretical equilibrium partial pressure of CO2 was found to be the most significant chemical variable for comparing solution on different kinds of carbonates and between glaciated and non-glaciated regions. Expect for diffuse flow springs and Lake Huron, the Bruce data do not separate easily into water types using either graphical or statistical (i.e. Linear Discriminant Analysis) analyses. This is partly because of the seasonality of the data and because of the intimate contact all waters have with bedrock.
Frustration and New Year Caves are active between-caves, paralleling in plan and profile the ephemeral stream bed of the V-shaped valley in which their entrances are found. The main streamsink in this valley system feeds their stream, which in turn supplies Zed Cave, a short outflow cave just outside the mouth of this valley. This modest derangement of surface drainage pattern is in keeping with the caves which show slight vadose modification of epiphreatic cave development. Although these active caves are young, they probably formed prior to a Late Pleistocene cold period (30,000 to 10,000 BP) on the basis of soils evidence. Clown Cave on the brow of the valley, a dry cave with indications of sluggish phreatic development, is related to a planation phase of Middle or Lower Tertiary age before valley incision. Bow and Keyslot Caves are abandoned in and out and outflow caves respectively, formed when the surface stream channel was a few metres above the present valley bottom so they antedate the active river caves a little. This hydrologically independent part of the Cooleman Plain mirrors in most respects the major parts draining to the Blue Waterholes, differing chiefly in the greater proportion of between-caves discovered so far.
The Appalachian fold belt system in Newfoundland is divided into three tectonic divisions: Western Platform; Central Mobile Belt; Avalon Platform Rocks of the Western Platform range in age from Precambrian to Carboniferous. Major karst areas are found there is Ordovician and Carboniferous rocks. Karst features of the study area (Goose Arm to Bonne Bay Big Pond) are in the Ordovician carbonates of the undivided St. George and Table Head Formations, covering a few hundred square kilometers. Features include karren, sinkholes, sinking streams, and karst springs, caves and other solutional and collapse features.
In the study area multiple fold and faulting episodes complicate the geology. Extensive and probably repeated glaciations have produced rugged terrane with U-shaped valleys and as much as 300m relief on the carbonates. There is variable but thick till cover. A class or classes of ice-scoured closed depressions with internal drainage are recognized. Postglacial karst forms are limited to varieties of karren (mainly littoral), small sinkholes, and cave systems that are inaccessively small in most instances. Distribution of all karst features is highly irregular.
Hydrologic patterns follow fluvial, fluviokarstic and holokarstic drainage. Large number of sinking ponds have seasonal overflow channels. The ground water drainage routes are generally short and shallow, with varied hydraulic gradients. Few instances of ground water route integration to regional springs is found.
The water chemistry of the area displays a tight normal distribution of hardness. This is attributed to the ponding effect. Seasonal trends show an overall increase in total hardness and other parameters, with some ponds showing linear increases and others cyclic variations.
Karst type and distribution is complex and irregular, but both glaciokarstic and karstiglacial development is present. The majority of karst forms point to karstiglacial development where previous karst forms have been modified by ice. Karstification is controlled by geology, rock lithology, hydraulic gradients and glacial scour and infill. Karstic processes continue to operate today, modifying the scoured basins and creating new karst forms.
The Abercrombie Caves are exemplary of a subterranean meander cutoff. The bedrock morphology, especially flat solution ceilings, permits reconstruction of an evolution from slow phreatic initiation to epiphreatic establishment of a substantial throughway, followed by progressive succession to vadose flow and phased channel incision. At two separate stages, there was twofold streamsink entry and underground junction of flow. Five 14C dates from alluvial sediments show that capture of the surface stream was certainly complete before c.15,000 BP and that by c.5,000 BP the stream had almost cut down to its present level.
Underground streams occur in valley floors on acid igneous rocks over a wide area of eastern Victoria. In some cases the underground passage is capable of accommodating all streamflow levels so that there is no active surface channel. Three of them contain passages accessible to cavers. The literature contains very few references to features of this kind and there is some confusion as to whether they should be called 'pseudokarst'. Detailed descriptions and diagrams are presented for two of the sites, Labertouche and Brittania Creek. At North Maroondah, sinking streams on dacite have caused complications for hydrological experiments. Possible origins of these features are discussed and it is obvious that several mechanisms are feasible. One of the difficulties in determining modes of formation is that a variety of processes could lead to very similar end products. Three main theories on the mode of formation are suggested.
Water samples taken from a spring and six locations on the stream fed by it were analysed in order to determine the factors responsible for the deposition of tufa along the channel. The spring water, whilst carrying a large quantity of dissolved carbonates, proved to be almost at equilibrium with calcite. The considerable amount of dissolved carbon dioxide necessary for such a load to be carried underwent rapid degassing after emergence of the water. In consequence, about one quarter of the initial load of dissolved carbonate was deposited in the first 430m of subaerial flow. This deposition did not however keep pace with the degassing of CO2, and calcite supersaturation increased progressively downstream.
![]() |
![]() |