Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That redirection is syn. deviation?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for chemical tracers (Keyword) returned 7 results for the whole karstbase:
The Use of Titanium Tetrachloride In The Visualisation Of Air Movement In Caves, 1971, Halbert E. J. , Michie N. A.

The problems concerned with the visualisation of low-velocity air flow in caves are discussed. The behaviour of several chemical tracers in the Mammoth Cave, Jenolan, New South Wales, is described, in particular that of the compound titanium tetrachloride. A suitable method for the transport and use of this compound has been developed.

Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France), 1998, Alberic P, Lepiller M,
The aim of this paper is to appraise the ability of the oxidation of riverine organic matter in the control of limestone dissolution, in a karst network. Biogeochemical processes during infiltration of river water into an alluvial aquifer have already been described for an average flow velocity of 4-5 m d(-1) (Jacobs, L. A., von Gunten, H. R., Keil, R, and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706; Von Gunten, H. R., Karametaxas, G., Krahenbuhl, U., Kuslys, M., Giovanoli R., Hoehn E. and Keil R. (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochim. Cosmochim. Acta 55, 3597-3609; Bourg, A. C. M. and Bertin, C. (1993) Quantitative appraisal of biogeochemical chemical processes during the infiltration of river water into an alluvial aquifer. Environ. Sci. Technol. 27, 661-666). Karstic drainage networks, such as in the River Loire-Val d'Orleans hydrologic system (Fig. 1), make possible flow velocities up to 200 m h(-1 a) and provide convenient access to different water samples several tens of km apart, at both extremities of the hydrologic unit (Chery, J.-L. (1983) Etude hydrochimique d'un aquifere karstique alimente par perte de cours d'eau (la Loire): Le systeme des calcaires de Beauce sous le val d'Orleans. These, Universite d'Orleans; Livrozet, E. (1984) Influence des apports de la Loire sur la qualite bacteriologique et chimique de l'aquifere karstique du val d'Orleans. These, Universite d'Orleans). Recharge of the karstic aquifer occurs principally from influent waters from stream sinks, either through coarse alluvial deposits or directly from outcrops of the regional limestone bedrock (Calcaires de Beauce). Recharge by seepage waters From the local catchment basin is small (Zunino, C., Bonnet, M. and Lelong, F. (1980) Le Val d'Orleans: un exemple d'aquifere a alimentation laterale. C. R. somm. Soc. Geol. Fr. 5, 195-199; Gonzalez R. (1992) Etude de l'organisation et evaluation des echanges entre la Loire moyenne et l'aquifere des calcaires de Beauce. These, Universite d'Orleans) and negligible in summer. This karstic hydrologic: system is the largest in France in terms of flow (tens to hundreds of m(3)/s) and provides the main water resource of the city of Orleans. Chemical compositions of influent waters (River Loire) and effluent waters (spring of the river Loiret) were compared, in particular during floods in summer 1992 and 1993 (Figs 2-4). Variation of chloride in the River Loire during the stream rise can be used as an environmental tracer of the underground flow (Fig. 2). Short transit times of about 3 days are detectable (Fig, 2) which are consistent with earlier estimations obtained with chemical tracers (Ref. in Chery, J.-L. (1983) These, Universite d'Orleans). Depending on the hydrological regime of the river, organic carbon discharge ranges between 3-7 and 2-13 mg/l for dissolved and particulate matter respectively (Fig. 3). Eutrophic characteristics and high algal biomasses are found in the River Loire during low water (Lair, N. and Sargos, D. (1993) A 10 year study at four sites of the middle course of the River Loire. I - Patterns of change in hydrological, physical and chemical variables in relation to algal biomass. Hudroecol. Appl. 5, 1-27) together with more organic carbon rich suspended particulate matter than during floods (30-40 C-org % dry weight versus 5-10%). Amounts of total organic carbon and dissolved oxygen (Fig. 3) dramatically decrease during the underground transport, whereas conversely, dissolved calcium, alkalinity and inorganic carbon increase (Fig. 4). Anoxia of outflows map start in April. Dissolution of calcium carbonates along the influent path outweighs closed system calcite equilibrium of inflow river waters (Table 3). The impact of organic matter oxidation on calcite dissolution may be traced by variations of alkalinity and total carbonates in water. Following, Jacobs, L. A., von Gunten, H. R., Keil, R. and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706), results are shown graphically (Fig. 5). Extent of reactions is controlled by the consumption of dissolved O-2 and nitrate for organic matter oxidation and by the release of Ca2 for calcite dissolution (Table 2). The karstic network is considered to behave like a biological reactor not exchanging with the atmosphere, with steady inhabitant microbial communities (Mariotti A., Landreau A, and Simon B. (1988) N-15 isotope biogeochemisrry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52, 1869-1878; Gounot, A.-M. (1991) Ecologie microbienne des eaux ei des sediments souterrains. Hydrogeologie, 239-248). Thus, energy requirements only are considered, not carbon assimilation. Moreover, there is no necessity to invoke any delay for nitrification enhancement, as observed elsewhere, after waste water discharge into the river (Chesterikoff, A., Garban, B., Billen, G. and Poulin, M. (1992) Inorganic nitrogen dynamics in the River Seine downstream from Paris (France). Biogeochem. 17, 147-164). Main microbial processes are assumed to be aerobic respiration, nitrification and denitrification. Reactions with iron and manganese, real but not quantitatively important, were neglected. Sulphate reduction and methane formation, certainly not active, were not considered. Denitrification, which is suggested by low nitrate and ammonium concentrations and anoxia in the outflow, is known to be rapid enough to be achieved in a short time (Dupain, S. (1992) Denitrification biologique heterotrophe appliquee au traitement des eaux d'alimentation: Conditions de fonclionnement et mise au point d'un procede. These, Universite Claude Bernard, Lyon). Reaction are somewhat arbitrary but conform to general acceptance (Morel, M. M. and Hering, J. G. (1993) Principles and Applications of Aquatic Chemistry. Wiley, New York). Anaerobic ammonium oxidation (Mulder A., van de Graaf, A. A., Robertson, L: A. and Kuenen, J. G. (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-184). although possible, was not considered. In fact, C/N ratio of the reactive organic matter has only mild repercussions on the results; i.e. in the same range as the analytical errors for alkalinity and total carbonates. The objective was simply to roughly confront characteristics of outflowing waters and the calculation. Respective roles of aerobes and denitrifiers, for instance, are not certain. Several periods during low water or floods were selected with various ranges for calcium dissolution or nitrate and oxygen concentrations. The result is that in most cases simulation and data are in reasonable accordance (Fig. 5). Amounts of organic matter in River Loire are generally sufficient to sustain the process (Table 3. Particulate organic matter is probably the most reactive. The balance of oxidation of organic matter indicates that about 65 mu g C-org/l.h are oxidized during the transport without much variation with the river regime or organic discharge. It is concluded that limestone dissolution is directly dependent on organic matter oxidation, but variation occurs (7-29 mg CuCO3/l) with the level of bases that can be neutralized in the River Loire water. (C) 1998 Elsevier Science Ltd. All rights reserved

Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA, 1999, Crandall Ca, Katz Bg, Hirten Jj,
Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m(3)/s. During these high-now conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and Rn-222; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, Rn-222, HCO3)

Sources of nitrate contamination and age of water in large karstic springs of Florida, 2004, Katz B. G. ,
In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge greater than or equal to2.8 m(3)/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and delta(15)N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most delta(15)N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35-years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, H-3/He-3) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and He-3 data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix

Estimation of denitrification potential in a karst aquifer using the N-15 and O-18 isotopes of NO3-, 2005, Einsiedl F, Maloszewski P, Stichler W,
A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2 and Cl- and concentrations of stable isotope O-18 were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of delta(15)N and delta(18)O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/ bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in delta(15)N and delta(18)O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems

Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers, 2005, Einsiedl F,
Concentration breakthrough curves obtained from a tracer test and time series of environmental tracers were analyzed to characterize slow and preferential water flow in a karst aquifer of the Franconian Alb, Germany. Tritium (H-3) and chemical tracers (uranine, bromide, strontium) were measured during low flow conditions and a storm runoff event. The mean transit time of water along the conduits was determined using bromide. Environmental tracer data collected between 1969 and 2003 were modeled to estimate the mean transit time of H-3 in the fissured-porous karst system (diffuse flow). The modelling approach was also used to estimate the water volume of the karst system and the conduits. The results suggest that the total water volume in the fissured-porous karst aquifer is in the range of 57 X 10(6) m(3) and approximately 6% of the total water volume is stored in the soil zone and the epikarst. The water storage capacity of the conduits seems to be of minor importance. A mean transit time of bromide in the range of 14 h was calculated for the conduit flow. The fissures and the porous rock matrix have a calculated water saturated porosity of 5.5% and a mean transit time of approximately 62 years was calculated. Thus the porous rock matrix represents the major dilution and storage zone for pollutants in the karst system. (c) 2005 Elsevier B.V. All rights reserved

Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: The case of Alta Cadena (Southern Spain), 2011, Mudarra M. , Andreo B.

From analysis of the hydrodynamic and hydrochemical responses of karst springs, it is possible to know the behaviour of the aquifers they drain. This manuscript aims to contribute to the characterization of infiltration process, and to determine the relative importance of the saturated zone and of the unsaturated zone in the hydrogeological functioning of carbonate aquifers, using natural hydrochemical tracers. Thus, chemical components together with temperature and electrical conductivity (both punctual and continuous records) have been monitored in three springs which drain Alta Cadena carbonate aquifer, Southern Spain. An evaluation of the percentage of the electrical conductivity frequency peaks determined for each of the three springs is linked to the chemical parameters that comprise the conductivity signal. One of these springs responds rapidly to precipitation (conduit flow system), due to the existence of a high degree of karstification in the unsaturated zone and in the saturated zone, both of which play a similar role in the functioning of the spring. Another spring responds to precipitation with small increases in water flow, somewhat lagged, because the aquifer has a low degree of karstification, even in the unsaturated zone, which seems to influence its functioning more strongly than does the saturated zone. The third spring drains a sector of the aquifer with a moderately developed degree of karstification, one that is intermediate between the other two, in which both the unsaturated zone and the saturated zone participate in the functioning of the spring, but with the latter zone having a stronger influence. These three springs show different hydrogeological functioning although they are in similar geological and climatic contexts, which show the heterogeneity of karst media and the importance of an adequate investigation for groundwater management and protection in karst areas.

Research highlights
- From analysis of the hydrodynamic and hydrochemical responses of karst springs. - Characterization of the relative importance of the saturated (SZ) and unsaturated (NSZ) zones - Villanueva del Rosario: NSZ and SZ play similar roles in the functioning of the system. ► Pita: NSZ seems to affect its functioning more than SZ. - Parroso: NSZ and SZ participate in the functioning of the system, but SZ is more active.

Results 1 to 7 of 7
You probably didn't submit anything to search for