Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That syngenetic karst is 1. karst developed contemporaneously with the lithification of the formation, as in eolian calcarenite where lithification and karstification of dune sands may proceed simultaneously [10]. 2. karst landforms that developed upon young, porous carbonate rocks, such as aeolianites, as they underwent lithification [9]. synonyms: (french.) karst syngenetique; (german.) syngenetischer karst; (greek.) synegeticon karst; (italian.) carsismo singenetico; (spanish.) karst singenetico; (turkish.) esturumlu karst; (yugoslavian.) singenetski krs (kras).?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for chemoautotrophic (Keyword) returned 11 results for the whole karstbase:
Diversity and dynamics of microarthropods from different biotopes of Las Sardinas cave (Mexico) , , Jos Palaciosvargas, Gabriela Castaomeneses, Daniel A. Estrada

An ecological study of the microarthropod communities from Las Sardinas cave was undertaken. Four different biotopes were studied over the course of a year: bat guano, litter, soil under the chemoautotrophic bacteria colonies and as a control, plain soil without litter or guano. A total of 27,913 specimens of a total of 169 species were collected. Analysis of Variance (ANOVA) showed that there is a significant effect of biotope on the recorded density, and the post hoc Tukey’s test showed that guano is the most different biotope with the highest value of density recorded. The interaction between season and biotope variables was not significant. In the most extreme case, 99 percent of the microarthropods in soil under chemoautotrophic bacteria were mites, mainly in the family Histiostomidae.


Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy, 1998, Mattison R. G. , Abbiati M. , Dando P. R. , Fitzsimons M. F. , Pratt S. M. , Southward A. J. , Southward E. C. ,
Observations were made on the distribution, morphology, and chemoautotrophic potential of microbial mats found in submarine caves of dolomitized limestone which contain hydrothermal sulphidic springs at Cape Palinuro, Italy. The distribution of microbial mats is closely associated with the flow of hydrothermal fluid from springs whose activity is intermittent and initiated during low tide. Fluid emitted from active springs in the Grotta Azzurra has a maximum temperature of 24.6 degrees C and is enriched in dissolved sulfur species (H2S, S2O32-) and dissolved gases (CH4, CO2). However, it is depleted in NaCl and dissolved O-2, in comparison with ambient seawater. This fluid is less dense and rises above the ambient seawater to form a visible thermocline and chemocline separating both lavers in the submarine caves. Microbial mats were attached to rock surfaces immersed in fluid above the chemocline and were differentiated into brown and white forms. Brown mats were composed of trichomes (4.2 0.1 mu m and 20.3 0.7 mu m in diameter) resembling the calcareous rock-boring cyanobacterium Schizothrix and clusters (6 mu m in diameter) of sarcina-like cells morphologically resembling methanogenic bacteria. White mats were composed of attached filaments resembling Beggiatoa (19.3 0.5 mu m, 39.0 1.7 mu m, and 66.9 3.3 mu m in diameter) and Thiothrix (4.2 0.2 mu m in diameter). Flexibacteria (<1 mu m in diameter) were common to both mats. Beggiatoa-like filaments were morphologically similar to those attached to rocks and the byssal threads of mussels from Lucky Strike vent field on the Mid-Atlantic Ridge, Morphological comparisons were also made with typical gliding Beggiatoa from shallow seeps in Eckernforder Bucht, Baltic Sea. White mats displayed chemoautotrophic fixation of CO2 under relatively well-oxygenated laboratory conditions (maximum rate 50.2 nmol CO2/mg dry wt/h) using internal S-0 or possibly S2O32- as electron donor. Photosynthesis may be limited in the Grotta Azzurra by insufficient illumination (6.3 x 10(-7) mu einsteins/cm(2)/s), with the possibility of Schizothrix living (at least in part) as a chemoheterotroph on while mats. Chemoautotrophic fixation of CO2 by white mats is proposed as a significant source of nutrition for benthic fauna in these caves, and has been estimated as contributing 50-70 mu mol CO2/m(2) of mat/min, as measured under laboratory conditions

Cueva de Villa Luz, Tabasco, Mexico: Reconnaissance Study of an Active Sulfur Spring Cave and Ecosystem, 1999, Hose, L. D. , Pisarowicz, J. A.
Cueva de Villa Luz (a.k.a. Cueva de las Sardinas) in Tabasco, Mexico, is a stream cave with over a dozen H2S-rich springs rising from the floor. Oxidation of the H2S in the stream results in abundant, suspended elemental sulfur in the stream, which is white and nearly opaque. Hydrogen sulfide concentrations in the cave atmosphere fluctuate rapidly and often exceed U.S. government tolerance levels. Pulses of elevated carbon monoxide and depleted oxygen levels also occasionally enter the cave. Active speleogenesis occurs in this cave, which is forming in a small block of Lower Cretaceous limestone adjacent to a fault. Atmospheric hydrogen sulfide combines with oxygen and water to form sulfuric acid, probably through both biotic and abiotic reactions. The sulfuric acid dissolves the limestone bedrock and forms gypsum, which is readily removed by active stream flow. In addition, carbon dioxide from the reaction as well as the spring water and cave atmosphere combines with water. The resultant carbonic acid also dissolves the limestone bedrock. A robust and diverse ecosystem thrives within the cave. Abundant, chemoautotrophic microbial colonies are ubiquitous and apparently act as the primary producers to the caves ecosystem. Microbial veils resembling soda straw stalactites, draperies, and u-loops suspended from the ceiling and walls of the cave produce drops of sulfuric acid with pH values of <0.5-3.0 0.1. Copious macroscopic invertebrates, particularly midges and spiders, eat the microbes or the organisms that graze on the microbes. A remarkably dense population of fish, Poecilia mexicana, fill most of the stream. The fish mostly eat bacteria and midges. Participants in an ancient, indigenous Zoque ceremony annually harvest the fish in the spring to provide food during the dry season.

Acidic cave-wall biofilms located in the Frasassi Gorge, Italy, 2000, Vlasceanu L. , Sarbu S. M. , Engel A. S. , Kinkle B. K. ,
Acidic bioflms present on cave walls in the sulfidic region of the Frasassi Gorge, Italy, were investigated to determine their microbial composition and their potential role in cave formation and ecosystem functioning. All biofilm samples examined had pH values <1.0. Scanning electron microscopy of the biofilms revealed the presence of various filaments and rods associated in large clusters with mineral crystals. Qualitative energy-dispersive x-ray analysis was used to determine that the crystals present on the cave walls, associated with the microbial biofilm, were composed of calcium and barium sulfate. Ribosomal RNA-based methods to determine the microbial composition of these biofilms revealed the presence of at least two strains of potential acidophilic, sulfur-oxidizing bacteria, belonging to the genera Thiobacillus and Sulfobacillus. An acid producing strain of Thiobacillus sp. also was obtained in pure culture. Stable isotope ratio analysis of carbon and nitrogen showed that the wall biofilms are isotopically light, suggesting that in situ chemoautotrophic activity plays an important role in this subsurface ecosystem

Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia, 2001, Engel As, Porter Ml, Kinkle Bk, Kane Tc,
Microbial mats from hydrogen sulfide-rich waters and cave-wall biofilms were investigated from Cesspool Cave, Virginia, to determine community composition and potential geomicrobiological functioning of acid-producing bacteria. Rates of microbial mat chemoautotrophic productivity were estimated using [C-14]-bicarbonate incorporations and microbial heterotrophy was determined using [C-14]-leucine incubations. Chemoautotrophic fixation was measured at 30.4 12.0 ng C mg dry wt(1) h(1), whereas heterotrophic productivity was significantly less at 0.17 0.02 ng C mg dry wt(1) h(1). The carbon to nitrogen ratios of the microbial mats averaged 13.5, indicating that the mats are not a high quality food source for higher trophic levels. Ribosomal RNA-based methods were used to examine bacterial diversity in the microbial mats, revealing the presence of at least five strains of bacteria. The identity of some of the strains could be resolved to the genus Thiothrix and the Flexibacter-Cytophaga-Bacteriodes phylum, and the identity of the remaining strains was to either the Helicobacter or Thiovulum group. Two of 10 sulfur-oxidizing, chemoautotrophic pure cultures of Thiobacillus spp. (syn. Thiomonas gen. nov.) demonstrated the ability to corrode calcium carbonate, suggesting that the colonization and metabolic activity of these bacteria may be enhancing cave enlargement

The hypogenic caves: a powerful tool for the study of seeps and their environmental effects, 2002, Forti P, Galdenzi S, Sarbu Sm,
Research performed in caves has shown the existence of significant effects of gas seeps, especially CO2 and H2S, within subterranean voids. Carbon dioxide causes important corrosive effects and creates characteristic morphologies (e.g., bell-shaped domes, bubble's trails), but is not involved in the deposition of specific cave minerals. On the other hand, in carbonate environments, hydrogen sulfide when oxidized in the shallow sections of the aquifer generates important corrosion effects and is also responsible for the deposition of specific minerals of which gypsum is the most common.Studies performed in the last few years have shown that H2S seeps in caves are associated with rich and diverse biological communities, consisting of large numbers of endemic species. Stable isotope studies (carbon and nitrogen) have demonstrated that these hypogean ecosystems are entirely based on in situ production of food by chemoautotrophic microorganisms using energy resulting from the oxidation of H2S.Although located only 20 m under the surface, Movile Cave does not receive meteoric waters due to a layer of impermeable clays and loess that covers the Miocene limestone in which the cave is developed. In the Frasassi caves, where certain amounts of meteoric water seep into the limestone, the subterranean ecosystems are still isolated from the surface. As the deep sulfidic waters mix with the oxigenated meteoric waters, sulfuric acid limestone corrosion is accelerated resulting in widespread deposition of gypsum onto the cave walls.Both these caves have raised a lot of interest for biological investigations regarding the chemoautotrophically based ecosystems, demonstrating the possibility of performing such studies in environments that are easily accessible and easy to monitor compared to the deep-sea environments where the first gas seeps were discovered

Aquifers: the ultimate groundwater-dependent ecosystems, 2006, Humphreys W. F. ,
Australian aquifers support diverse metazoan faunas comprising obligate groundwater inhabitants, largely crustaceans but also including insects, worms, gastropods, mites and fish. They typically comprise short-range endemics, often of relictual lineages and sometimes widely vicariant from their closest relatives. They have been confined to subterranean environments from a range of geological eras and may contain information on the deep history of aquifers. Obligate groundwater fauna ( stygobites) occurs in the void spaces in karst, alluvial and fractured rock aquifers. They have convergent morphologies ( reduction or loss of eyes, pigment, enhanced nonoptic senses, vermiform body form) and depend on energy imported from the surface except in special cases of in situ chemoautotrophic energy fixation. In Australia, many stygofaunas in arid areas occur in brackish to saline waters, although they contain taxa from lineages generally restricted to freshwater systems. They may occur alongside species belonging to taxa considered typical of the marine littoral although far removed in space and time from marine influence. The ecological attributes of stygofauna makes them vulnerable to changes in habitat, which, combined with their taxonomic affinities, makes them a significant issue to biodiversity conservation. The interaction of vegetation and groundwater ecosystems is discussed and, in places, there are conservation issues common to both

Benchmark Papers in Karst Science, 2007,
A collection of benchmark papers in karst science: The Decade 1971 ? 1980 13. The Geochemistry of Some Carbonate Ground Waters in Central Pennsylvania, D. Langmuir 14. Genetic Interpretation of Regressive Evolutionary Processes: Studies on Hybrid Eyes of Two Astyanax Cave Populations (Characidae, Pisces), H. Wilkins 15. Cavernicoles in Lava Tubes on the Island of Hawaii, F.G. Howarth 16. Evolutionary Genetics of Cave-Dwelling Fishes of the Genus Astyanax, J.C. Avise and R.L. Selander 17. Deducing Flow Velocity in Cave Conduits from Scallops, R.L. Curl 18. The Origin of Maze Caves, A.N. Palmer 19. Foraging by Cave Beetles: Spatial and Temporal Heterogeneity of Prey, T.C. Kane and T.L. Poulson 20. Considerations of the Karst Ecosystem, R. Rouch 21. Diffuse Flow and Conduit Flow in Limestone Terrain in the Mendip Hills, Somerset (Great Britain), T.C. Atkinson 22. The Development of Limestone Cave Systems in Dimensions of Length and Depth, D.C. Ford and R.O. Ewers The Decade 1981 ? 1990 23. Magnetostratigraphy of Sediments in Mammoth Cave, Kentucky, V.A. Schmidt 24. Uranium-Series Ages of Speleothem from Northwest England: Correlations with Quaternary Climate, M. Gascoyne, D.C. Ford and H.P. Schwarcz 25. Analysis and Interpretation of Data from Tracer Tests in Karst Areas, W.K. Jones 26. Evolution of Adult Morphology and Life-History Characters in Cavernicolous Ptomaphagus Beetles, S.B. Peck 27. Ecology of the Mixohaline Hypogean Fauna along the Yugoslav Coasts, B. Sket 28. Fractal Dimensions and Geometries of Caves, R.L. Curl 29. Regional Scale Transport in a Karst Aquifer. 1. Component Separation of Spring Flow Hydrographs, S.J. Dreiss 30. Morphological Evolution of the Amphipod Gammarus minus in Caves: Quantitative Genetic Analysis, D.W. Fong 31. The Flank Margin Model for Dissolution Cave Development in Carbonate Platforms, J.E. Mylroie and J.L. Carew 32. Sulfuric Acid Speleogenesis of Carlsbad Cavern and Its Relationship to Hydrocarbons, Delaware Basin, New Mexico and Texas, C.A. Hill The Decade 1991 ? 2000 33. Origin and Morphology of Limestone Caves, A.N. Palmer 34. How Many Species of Troglobites Are There? D.C. Culver and J.R. Holsinger 35. Annual Growth Banding in a Cave Stalagmite, A. Baker, P.L. Smart, R.L. Edwards and D.A. Richards 36. Natural Environment Change in Karst: The Quaternary Record, S.-E. Lauritzen 37. Pattern and Process in the Biogeography of Subterranean Amphipods, J.R. Holsinger 38. A Chemoautotrophically Based Cave Ecosystem, S.M. Sarbu, T.C. Kane and B.K. Kinkle 39. Rhodopsin Evolution in the Dark, K.A. Crandall and D.M. Hillis 40. Climate and Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri, USA, J.A. Dorale, R.L. Edwards, E. Ito and L.A. González

A recently evolved symbiosis between chemoautotrophic bacteria and a cave-dwelling amphipod, 2009, Dattagupta, S. , Schaperdoth, I. , Montanari, A. , Mariani, S. , Kita, N. , Valley, J. W. And Macalady, J. L.
Symbioses involving animals and chemoautotrophic bacteria form the foundation of entire ecosystems at deep-sea hydrothermal vents and cold seeps, but have so far not been reported in terrestrial or freshwater environments. A rare example of a terrestrial ecosystem sustained by chemoautotrophy is found within the sulfide-rich Frasassi limestone cave complex of central Italy. In this study, we report the discovery of abundant filamentous bacteria on the exoskeleton of Niphargus ictus, a macroinvertebrate endemic to Frasassi. Using 16S rDNA sequencing and fluorescence in situ hybridization (FISH), we show that N. ictus throughout the large cave complex are colonized by a single phylotype of bacteria in the sulfur-oxidizing clade Thiothrix. The epibiont phylotype is distinct from Thiothrix phylotypes that form conspicuous biofilms in the cave streams and pools inhabited by N. ictus. Using a combination of 13C labeling, FISH, and secondary ion mass spectrometry (SIMS), we show that the epibiotic Thiothrix are autotrophic, establishing the first known example of a non-marine chemoautotroph-animal symbiosis. Conditions supporting chemoautotrophy, and the N. ictus-Thiothrix association, likely commenced in the Frasassi cave complex between 350 000 and 1 million years ago. Therefore, the N. ictus-Thiothrix symbiosis is probably significantly younger than marine chemoautotrophic symbioses, many of which have been evolving for tens to hundreds of million years.

Karst Geomorphology: Sulfur Karst Processes, 2013, Hose, L. D.

Recognition and understanding of the important role of sulfur redox processes in developing karst has grown over the last25 years with the discovery of remarkable sulfur-rich caves worldwide and advances in geomicrobiology. Recent work hasshown that microbes interact with hydrocarbons, calcium sulfate bedrock, magmatic fluids, and sulfide ore minerals toreduce gypsum/anhydrite to calcite, produce hydrogen sulfide and sulfuric acid, convert limestone to gypsum, in crease porosity in carbonate bedrocks, precipitate massive sulfur, and deposit Mississippi Valley-Type (MVT) ores. These processesare most active in the shallow phreatic and vadose-phreatic subsurface, where transitions between aerobic and anaerobicconditions exist.


Ostracod Assemblages in the Frasassi Caves and Adjacent Sulfidic Spring and Sentino River in the Northeastern Apennines of Italy, 2013, Peterson D. E. , Finger K. L. , Iepure S. , Mariani S. , Montanari A. , Namiotko T.

Rich, diverse assemblages comprising a total (live + dead) of twenty-one ostracod species belonging to fifteen genera were recovered from phreatic waters of the hypogenic Frasassi Cave system and the adjacent Frasassi sulfidic spring and Sentino River in the Marche region of the northeastern Apennines of Italy. Specimens were recovered from ten sites, eight of which were in the phreatic waters of the cave system and sampled at different times of the year over a period of five years. Approximately 6900 specimens were recovered, the vast majority of which were disarticulated valves; live ostracods were also collected. The most abundant species in the sulfidic spring and Sentino River were Prionocypris zenkeri, Herpetocypris chevreuxi, and Cypridopsis vidua, while the phreatic waters of the cave system were dominated by two putatively new stygobitic species of Mixtacandona and Pseudolimnocythere and a species that was also abundant in the sulfidic spring, Fabaeformiscandona ex gr. F. fabaeformis.
Pseudocandona ex gr. P. eremita, likely another new stygobitic species, is recorded for
the first time in Italy. The relatively high diversity of the ostracod assemblages at Frasassi
could be attributed to the heterogeneity of groundwater and associated habitats or to
niche partitioning promoted by the creation of a chemoautotrophic ecosystem based on
sulfur-oxidizing bacteria. Other possible factors are the geologic age and hydrologic
conditions of the cave and karst aquifer system that possibly originated in the early–
middle Pleistocene when topographic uplift and incision enabled deep sulfidic waters to
reach the local carbonate aquifer. Flooding or active migration would have introduced
the invertebrates that now inhabit the Frasassi Cave system


Results 1 to 11 of 11
You probably didn't submit anything to search for