Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stygoxene is an aquatic trogloxene [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for co2-water systems (Keyword) returned 7 results for the whole karstbase:
EARLY DEVELOPMENT OF KARST SYSTEMS .1. PREFERENTIAL FLOW PATH ENLARGEMENT UNDER LAMINAR-FLOW, 1994, Groves C. G. , Howard A. D. ,
Modeling of flow and solutional processes within networks of interconnected conduits in limestone aquifers indicates that enlargement occurs very selectively during the early stages of karst aquifer development under laminar flow. If initial flow paths are uniform in size, almost all enlargement occurs along a single set of connected conduits that lie along a direct path between recharge and discharge locations and are aligned along the hydraulic gradient. With a sufficiently large variation in initial aperture widths, enlargement occurs along the flow path offering the least resistance to flow, but since flow rates in laminar flow are proportional to the fourth power of diameter but only linearly proportional to hydraulic gradient, the preferentially enlarged set of fractures may follow an indirect path. Results disfavor earlier suggestions that nonselective cave patterns result from artesian flows (at least under laminar flow conditions) and that all passages should be competitive until the onset of turbulent flow

Role of mixing corrosion in calcite-aggressive H2O-CO2-CaCO3 solutions in the early evolution of karst aquifers in limestone, 2000, Gabrovsek F, Dreybrodt W,
Two cave-forming mechanisms in limestone are discussed currently. First, when two H2O-CO2-CaCO3 solutions, saturated with respect to calcite but with different chemical compositions mix, renewed aggressiveness to limestone dissolution occurs. This process called mixing corrosion [Bogli, 1964, 1980], in combination with linear dissolution kinetics, has been suggested as cave forming. Second, it has been shown that solely the action of nonlinear dissolution kinetics can generate extended karst conduits. This paper combines both mechanisms. By digital modeling of the evolution of the aperture widths of a confluence of two fractures into a third one it is shown that the first mechanism does not create large cave conduits. The combination of mixing corrosion and nonlinear kinetics, however, considerably intensifies karstification, compared to that of nonlinear kinetics solely. The times to terminate early evolution of karst are significantly reduced when the CO2 concentrations of the inflowing solutions differ by no more than 30%. We discuss the underlying mechanisms by inspection of the time dependence of the evolution of aperture widths, flow rates through them, and of the renewed undersaturation of the mixed solution at the confluence of two fractures. Finally, the evolution of a karst aquifer on a two-dimensional percolation network is modeled when mixing corrosion is present, and compared to that on an identical net with identical nonlinear dissolution kinetics, but mixing corrosion excluded. Large differences in the morphology of the net of cave conduits are found and also a reduction of the time of their evolution. From these findings we conclude that climatic changes, which influence the p(CO2) in the soil, can divert the evolving cave patterns

Karst aquifer evolution in fractured, porous rocks, 2000, Kaufmann G. , Braun J. ,
The evolution of flow in a fractured, porous karst aquifer is studied by means of the finite element method on a two-dimensional mesh of irregularly spaced nodal points. Flow within the karst aquifer is driven by surface recharge from the entire region, simulating a precipitation pattern, and is directed toward an entrenched river as a base level. During the early phase of karstification both the permeable rock matrix, modeled as triangular elements, and fractures within the rock matrix, modeled as linear elements, carry the now. As the fractures are enlarged with time by chemical dissolution within the system calcite-carbon dioxide-water, flow becomes more confined to the fractures. This selective enlargement of fractures increases the fracture conductivity by several orders of magnitude during the early phase of karstification. Thus flow characteristics change from more homogeneous, pore-controlled flow to strongly heterogeneous, fracture-controlled flow. We study several scenarios for pure limestone aquifers, mixed sandstone-limestone aquifers, and various surface recharge conditions as well as the effect of faulting on the aquifer evolution. Our results are sensitive to initial fracture width, faulting of the region, and recharge rate

Karst hydrology: recent developments and open questions, 2002, White W. B. ,
Karst aquifers are those that contain dissolution-generated conduits that permit the rapid transport of ground water, often in turbulent flow. The conduit system receives localized inputs from sinking surface streams and as storrn runoff through sinkholes. The conduit system interconnects with the ground water stored in fractures and in the granular permeability of the bedrock. As a conceptual framework, the basic components of karstic aquifers seem to be generally accepted. Progress in the decade of the 1990s has focused mainly on quantifying the conceptual model. The equilibrium chemistry of the limestone and dolomite dissolution has been reliably established, and there are formal models for the kinetics of dissolution. Kinetic models have been used to calculate both fracture enlargement to protoconduits (0.01-m aperture) and the enlargement of protoconduits to the size of typical cave passages. Modeling of ground water flow in karstic aquifers has been less successful. Progress has been made in the use of water budgets, tracer studies, hydrograph analysis and chemograph analysis for the characterization of karstic aquifers. Topics on which progress is needed include (a) the construction of models that describe the complete aquifer including the interactions of all components, (b) models for elastic sediment transport within the aquifer, and (c) working out processes and mechanisms for contaminant transport in karst aquifers. An optimistic assessment at the end of the millennium is that a complete model for karstic aquifers is visible on the horizon.

Modeling of karst aquifer genesis: Influence of exchange flow, 2003, Bauer S, Liedl R, Sauter M,
[1] This paper presents a numerical model study simulating the early karstification of a single conduit embedded in a fissured system. A hybrid continuum-discrete pipe flow model (CAVE) is used for the modeling. The effects of coupling of the two flow systems on type and duration of early karstification are studied for different boundary conditions. Assuming fixed head boundaries at both ends of the conduit, coupling of the two flow systems via exchange flow between the conduit and the fissured system leads to an enhanced evolution of the conduit. This effect is valid over a wide range of initial conduit diameters, and karstification is accelerated by a factor of about 100 as compared to the case of no exchange flow. Parameter studies reveal the influence of the exchange coefficient and of the hydraulic conductivity of the fissured system on the development time for the conduit. In a second scenario the upstream fixed head boundary is switched to a fixed flow boundary at a specified flow rate during the evolution, limiting the amount of water draining toward the evolving conduit. Depending on the flow rate specified, conduit evolution may be slowed down or greatly impaired if exchange flow is considered

Conduit properties and karstification in the unconfined Floridan Aquifer, 2004, Screaton E. , Martin J. B. , Ginn B. , Smith L. ,
Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m(2), although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m(3) more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources

Dissolution of limestone fractures by cooling waters: Early development of hypogene karst systems, 2005, Andre Bj, Rajaram H,

[1] Fracture dissolution in the early stages of karstification under hypogene conditions is investigated using a coupled numerical model of fluid flow, heat transfer, and reactive transport. Dissolution of calcite in the H2O-CO2-CaCO3 system along a cooling flow path is investigated using both equilibrium and kinetic models. During the very early stages of fracture growth, there is a positive feedback between flow, heat transfer, and dissolution. In this stage the dissolution rate is largely controlled by the retrograde solubility of calcite, and aperture growth is relatively uniform along the fracture length. There is a period of slow continuous increase in the mass flow rate through the fracture, which is followed by an abrupt rapid increase. We refer to the time when this rapid increase occurs as the maturation time. As the flow rate continues to increase after maturation, forced convective effects lead to higher fluid temperatures in the fracture, resulting in a negative feedback that slows the rate of fracture growth. The behavior of aperture growth before the maturation time can be described by a simple ordinary differential equation. The solution of this differential equation provides an estimate of the maturation time, in terms of the initial aperture, hydraulic and thermal gradients, and the change in solubility with temperature. The behavior before maturation in two-dimensional variable aperture fractures is investigated using a simplified model. The maturation time is shown to decrease with the degree of aperture variability due to highly selective growth along preferential flow paths


Results 1 to 7 of 7
You probably didn't submit anything to search for