Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That funicular regime is the distribution of continuous liquid phase along pore walls with gaseous phase at the pore center [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for conduit networks (Keyword) returned 21 results for the whole karstbase:
Showing 1 to 15 of 21
Structure et comportement hydraulique des aquifers karstiques, DSc thesis, 1996, Jeannin, P. Y.

This thesis aims to provide a better knowledge of karst flow systems, from a functional point of view (behaviour with time), as well as from a structural one (behaviour in space). The first part of the thesis deals with the hydrodynamic behaviour of karst systems, and the second part with the geometry of karstic networks, which is a strong conditioning factor for the hydrodynamic behaviour.
Many models have been developed in the past for describing the hydrodynamic behaviour of karst hydrogeological systems. They usually aim to provide a tool to extrapolate, in time and/or space, some characteristics of the flow fields, which can only be measured at a few points. Such models often provide a new understanding of the systems, beyond what can be observed directly in the field. Only special field measurements can verify such hypotheses based on numerical models. This is an significant part of this work. For this purpose, two experimental sites have been equipped and measured: Bure site or Milandrine, Ajoie, Switzerland, and Holloch site, Muotathal, Schwyz, Switzerland. These sites gave us this opportunity of simultaneously observe hydrodynamic parameters within the conduit network and, in drillholes, the "low permeability volumes" (LPV) surrounding the conduits.
These observations clearly show the existence of a flow circulation across the low permeability volumes. This flow may represent about 50% of the infiltrated water in the Bure test-field. The epikarst appears to play an important role into the allotment of the infiltrated waters: Part of the infiltrated water is stored at the bottom of the epikarst and slowly flows through the low permeability volumes (LPV) contributing to base flow. When infiltration is significant enough the other part of the water exceeds the storage capacity and flows quickly into the conduit network (quick flow).
For the phreatic zone, observations and models show that the following scheme is adequate to describe the flow behaviour: a network of high permeability conduits, of tow volume, leading to the spring, is surrounded by a large volume of low permeability fissured rock (LPV), which is hydraulically connected to the conduits. Due to the strong difference in hydraulic conductivity between conduits and LPV, hydraulic heads and their variations in time and space are strongly heterogeneous. This makes the use of piezometric maps in karst very questionable.
Flow in LPV can be considered as similar to flow in fractured rocks (laminar flow within joints and joints intersections). At a catchment scale, they can be effectively considered as an equivalent porous media with a hydraulic conductivity of about 10-6 to 10-7 m/s.
Flow in conduits is turbulent and loss of head has to be calculated with appropriate formulas, if wanting any quantitative results. Our observations permitted us to determine the turbulent hydraulic conductivity of some simple karst conduits (k', turbulent flow), which ranges from 0.2 to 11 m/s. Examples also show that the structure of the conduit network plays a significant role on the spatial distribution of hydraulic heads. Particularity hydraulic transmissivity of the aquifer varies with respect to hydrological conditions, because of the presence of overflow conduits located within the epiphreatic zone. This makes the relation between head and discharge not quadratic as would be expected from a (too) simple model (with only one single conduit). The model applied to the downstream part of Holloch is a good illustration of this phenomena.
The flow velocity strongly varies along the length of karst conduits, as shown by tracer experiments. Also, changes in the conduit cross-section produce changes in the (tow velocity profile. Such heterogeneous flow-field plays a significant role in the shape of the breakthrough curves of tracer experiments. It is empirically demonstrated that conduit enlargements induce retardation of the breakthrough curve. If there are several enlargements one after the other, an increase of the apparent dispersivity will result, although no diffusion with the rock matrix or immobile water is present. This produces a scale effect (increase of the apparent dispersivity with observation scale). Such observations can easily be simulated by deterministic and/or black box models.
The structure of karst conduit networks, especially within the phreatic zone, plays an important role not only on the spatial distribution of the hydraulic heads in the conduits themselves, but in the LPV as well. Study of the network geometry is therefore useful for assessing the shape of the flow systems. We further suggest that any hydrogeological study aiming to assess the major characteristics of a flow system should start with a preliminary estimation of the conduit network geometry. Theories and examples presented show that the geometry of karst conduits mainly depends on boundary conditions and the permeability field at the initial stage of the karst genesis. The most significant boundary conditions are: the geometry of the impervious boundaries, infiltration and exfiltration conditions (spring). The initial permeability field is mainly determined by discontinuities (fractures and bedding planes). Today's knowledge allows us to approximate the geometry of a karst network by studying these parameters (impervious boundaries, infiltration, exfiltration, discontinuity field). Analogs and recently developed numerical models help to qualitatively evaluate the sensitivity of the geometry to these parameters. Within the near future, new numerical tools will be developed and will help more closely to address this difficult problem. This development will only be possible if speleological networks can be sufficiently explored and used to calibrate models. Images provided by speleologists to date are and will for a long time be the only data which can adequately portray the conduit networks in karst systems. This is helpful to hydrogeologists. The reason that we present the example of the Lake Thun karst system is that it illustrates the geometry of such conduits networks. Unfortunately, these networks are three-dimensional and their visualisation on paper (2 dimensions) is very restrictive, when compared to more effective 3-D views we can create with computers. As an alternative to deterministic models of speleogenesis, fractal and/or random walk models could be employed.


Structure et comportement hydraulique des aquifers karstiques, DSc. Thesis, faculte des Sciences de l'Universite de Neuchatel., 1998, Jeannin Py.
This thesis aims to provide a better knowledge of karst flow systems, from a functional point of view (behaviour with time), as well as from a structural one (behaviour in space). The first part of the thesis deals with the hydrodynamic behaviour of karst systems, and the second part with the geometry of karstic networks, which is a strong conditioning factor for the hydrodynamic behaviour. Many models have been developed in the past for describing the hydrodynamic behaviour of karst hydrogeological systems. They usually aim to provide a tool to extrapolate, in time and/or space, some characteristics of the flow fields, which can only be measured at a few points. Such models often provide a new understanding of the systems, beyond what can be observed directly in the field. Only special field measurements can verify such hypotheses based on numerical models. This is an significant part of this work. For this purpose, two experimental sites have been equipped and measured: Bure site or Milandrine, Ajoie, Switzerland, and Holloch site, Muotathal, Schwyz, Switzerland. These sites gave us this opportunity of simultaneously observe hydrodynamic parameters within the conduit network and, in drillholes, the "low permeability volumes" (LPV) surrounding the conduits. These observations clearly show the existence of a flow circulation across the low permeability volumes. This flow may represent about 50% of the infiltrated water in the Bure test-field. The epikarst appears to play an important role into the allotment of the infiltrated waters: Part of the infiltrated water is stored at the bottom of the epikarst and slowly flows through the low permeability volumes (LPV) contributing to base flow. When infiltration is significant enough the other part of the water exceeds the storage capacity and flows quickly into the conduit network (quick flow). For the phreatic zone, observations and models show that the following scheme is adequate to describe the flow behaviour: a network of high permeability conduits, of tow volume, leading to the spring, is surrounded by a large volume of low permeability fissured rock (LPV), which is hydraulically connected to the conduits. Due to the strong difference in hydraulic conductivity between conduits and LPV, hydraulic heads and their variations in time and space are strongly heterogeneous. This makes the use of piezometric maps in karst very questionable. Flow in LPV can be considered as similar to flow in fractured rocks (laminar flow within joints and joints intersections). At a catchment scale, they can be effectively considered as an equivalent porous media with a hydraulic conductivity of about 10-6 to 10-7 m/s. Flow in conduits is turbulent and loss of head has to be calculated with appropriate formulas, if wanting any quantitative results. Our observations permitted us to determine the turbulent hydraulic conductivity of some simple karst conduits (k',turbulent flow), which ranges from 0.2 to 11 m/s. Examples also show that the structure of the conduit network plays a significant role on the spatial distribution of hydraulic heads. Particularity hydraulic transmissivity of the aquifer varies with respect to hydrological conditions, because of the presence of overflow conduits located within the epiphreatic zone. This makes the relation between head and discharge not quadratic as would be expected from a (too) simple model (with only one single conduit). The model applied to the downstream part of Holloch is a good illustration of this phenomena. The flow velocity strongly varies along the length of karst conduits, as shown by tracer experiments. Also, changes in the conduit cross-section produce changes in the (tow velocity profile. Such heterogeneous flow-field plays a significant role in the shape of the breakthrough curves of tracer experiments. It is empirically demonstrated that conduit enlargements induce retardation of the breakthrough curve. If there are several enlargements one after the other, an increase of the apparent dispersivity will result, although no diffusion with the rock matrix or immobile water is present. This produces a scale effect (increase of the apparent dispersivity with observation scale). Such observations can easily be simulated by deterministic and/or black box models. The structure of karst conduit networks, especially within the phreatic zone, plays an important role not only on the spatial distribution of the hydraulic heads in the conduits themselves, but in the LPV as well. Study of the network geometry is therefore useful for assessing the shape of the flow systems. We further suggest that any hydrogeological study aiming to assess the major characteristics of a flow system should start with a preliminary estimation of the conduit network geometry. Theories and examples presented show that the geometry of karst conduits mainly depends on boundary conditions and the permeability field at the initial stage of the karst genesis. The most significant boundary conditions are: the geometry of the impervious boundaries, infiltration and exfiltration conditions (spring). The initial permeability field is mainly determined by discontinuities (fractures and bedding planes). Today's knowledge allows us to approximate the geometry of a karst network by studying these parameters (impervious boundaries, infiltration, exfiltration, discontinuity field). Analogs and recently developed numerical models help to qualitatively evaluate the sensitivity of the geometry to these parameters. Within the near future, new numerical tools will be developed and will help more closely to address this difficult problem. This development will only be possible if speleological networks can be sufficiently explored and used to calibrate models. Images provided by speleologists to date are and will for a long time be the only data which can adequately portray the conduit networks in karst systems. This is helpful to hydrogeologists. The reason that we present the example of the Lake Thun karst system is that it illustrates the geometry of such conduits networks. Unfortunately, these networks are three-dimensional and their visualisation on paper (2 dimensions) is very restrictive, when compared to more effective 3-D views we can create with computers. As an alternative to deterministic models of speleogenesis, fractal and/or random walk models could be employed.

Modeling of the complex karstic system in Saint-Chaptes (Gard, France): A tool for the synthesis of geological and hydrogeological data, 2000, Josnin J. Y. , Pistre S. , Drogue C. ,
Numerous software packages allow the efficient modeling of the hydrodynamic behaviour of aquifers in continuous media. To study pressure transfer in discontinuous media like karsts, the black-box models are restrictive and the models that consider discrete conduit networks are unsuitable for reservoir scale. We show that the utilization of a continuous media model can lead to useful results, even in the case of complex systems, but needs to be adapted to karst specificity. The problem is approached by studying a hydrogeological system located in the Mediterranean Languedoc region: the S-t-Chaptes basin. This system consists of three superposed aquifers included in four different stratigraphic series. The main aquifer is a karst formation in contact with two other karst formations that belong to different hydrogeologic systems. Considering geological data in addition to hydrological data and with the hypothesis of a relative homogenization of the karst's hydraulic behaviour on a large spatial scale for daily to monthly increments, the model that takes into account the relations with the other aquifers allows (i) a preliminary identification of the main heterogeneities inside the reservoir; (ii) the location of barriers and low-permeability zones that isolate some parts of the aquifer; (iii) the observation of a curious behaviour of the piezometric levels in the confined zones of the aquifer; and (iv) the characterization of the exchanges with the other low-volume but existing aquifers

Genesis of a large cave system: the case study of the North of Lake Thun system (Canton Bern, Switzerland), 2000, Jeannin Py. , Bitterli T. , Hauselmann P.
The genesis of the cave system in the region Hohgant-Sieben Hengste-Lake of Thun (more than 250 km of surveyed passage) has been reconstructed based on speleomorphological observations (mainly by observing where the morphology changes from vadose to phreatic). Eight flow systems (phases) and their respective conduit networks have been distinguished so far. The oldest had a phreatic level at an altitude of 1950 m a.s.l. The last corresponds to today's phreatic zone located at 658 m a.s.l. Between each system, the water table dropped several hundred meters. This appears to be a consequence of changes in boundary conditions, mainly the springis position, which moved down as a tectonic uplift and deepening of the nearby valleys occured. Observations demonstrate that phreatic conduits are sometimes developed close to the ancient water table, but often much deeper, down to 200 to 400 m below this level. The change from one phase to the next seems to have been quick. This stepwise evolution is compatible with the results of computer models which give durations of 10'000 to 30i000 years for conduits systems to develop. Analysis of the conduit networks of each flow system shows that their geometry is mainly influenced by the hydraulic gradients and the overall geometry of the aquifer. The orientation of discontinuity surfaces (fractures and bedding planes) and/or their intersections, play a subordinate role. This is also supported by numerical models found in the literature. As, despite a high fracture density, we observe deep rather than shallow phreatic loops, we assume that the heterogeneity of the discontinuity openings plays a more important role in the depth of karstification than the frequency of the discontinuities.

Modeling flow in phreatic and epiphreatic karst conduits in the Holloch cave (Muotatal, Switzerland), 2001, Jeannin P. Y. ,
The Holloch cave is a site where the hydrodynamic behavior of a karst conduit network can be observed with a high degree of precision. Observed heads. discharge rates, conduit sizes, and conduit lengths have been compiled into a simple hydrodynamic model in order to check their consistency. It was possible to calibrate and satisfactorily fit the observed data. Model results show the following: (1) Flow models which are able to simulate turbulent flow in variably saturated conduit networks can adequately model conduit flow-dominated karst systems. (2) Karst systems may be strongly nonlinear, especially because of the presence of epiphreatic conduits. (3) Under certain circumstances, storage in the epiphreatic conduits and in the fissured limestone matrix can be neglected. (4) The typical effective hydraulic conductivity of karst conduits ranges between 1 and 10 m s(-1), and the Louis Formula is adequate to calculate head losses in those conduits. (5) Indirect measurements of flow velocity using scallop size indicate values of similar to 30-40% of the maximal annual discharge, and velocity derived from pebble size indicates values of similar to 150% of the maximal annual discharge

Characterisation of karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum karst., 2002, Birk S.
Karst aquifers are important groundwater resources, which are highly vulnerable to contamination due to fast transport in solutionally enlarged conduits. Management and protection of karst water resources require an adequate aquifer characterisation at the catchment scale. Due to the heterogeneity and complexity of karst systems, this is not easily achieved by standard investigation techniques such as pumping tests. Therefore, a process-based numerical modelling tool is developed, designed to support the karst aquifer characterisation using two complementary approaches: Firstly, the simulation of conduit enlargement, which aims at predicting aquifer properties by forward modelling of long-term karst genesis; secondly, the simulation of heat and solute transport processes, which aims at inferring aquifer properties from short-term karst spring response after recharge events. Karst genesis modelling is applied to a conceptual setting based on field observations from the Western Ukraine, where the major part of known gypsum caves is found. Gypsum layers are typically supplied by artesian flow of aggressive water from insoluble aquifers underneath. Processes and parameters, controlling solutional enlargement of single conduits under artesian conditions, are identified in detailed sensitivity analyses. The development of conduit networks is examined in parameter studies, suggesting that the evolution of maze caves is predetermined by structural preferences such as laterally extended fissure networks beneath a horizon less prone to karstification. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The structure of the mature conduit system is found to be determined during early karstification, which is characterised by high hydraulic gradients and low flow rates in the gypsum layer. Short-term karst spring response after recharge events is firstly examined in parameter studies by forward modelling. The numerical simulations reveal that different controlling processes of heat and solute transport account for the different behaviour of water temperature and solute concentration frequently observed at karst springs. It is demonstrated that these differences may be employed to reduce the ambiguity in the aquifer characterisation. In order to test the feasibility of the corresponding inverse approach, which aims at inferring aquifer properties from the karst spring response, the model is applied to a field site in Southern Germany (Urenbrunnen spring, Vohringen). Data input is provided by both literature and own field work. Several models, which reproduce the results of a combined tracer and recharge test, are calibrated to spring discharges and solute concentrations measured after a recharge event. In order to validate the calibrated models, the measured spring water temperatures are simulated by heat transport modelling. The model application yields information on aquifer properties as well as flow and transport processes at the field site. Advection is identified as the dominant transport process, whereas the dissolution reaction of gypsum is found to be insignificant in this case. The application to gypsum aquifers demonstrates that both suggested approaches are suitable for the characterisation of karst systems. Model results, however, are highly sensitive to several input parameters, in particular in karst genesis modelling. Therefore, extensive field work is required to provide reliable data for site-specific model applications. In order to account for uncertainties, it is recommended to conduct parameter studies covering possible ranges of the most influential parameters.

Characterisation of karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum karst, PhD thesis, 2002, Birk, S.

Karst aquifers are important groundwater resources, which are highly vulnerable to contamination due to fast transport in solutionally enlarged conduits. Management and protection of karst water resources require an adequate aquifer characterisation at the catchment scale. Due to the heterogeneity and complexity of karst systems, this is not easily achieved by standard investigation techniques such as pumping tests. Therefore, a process-based numerical modelling tool is developed, designed to support the karst aquifer characterisation using two complementary approaches: Firstly, the simulation of conduit enlargement, which aims at predicting aquifer properties by forward modelling of long-term karst genesis; secondly, the simulation of heat and solute transport processes, which aims at inferring aquifer properties from short-term karst spring response after recharge events.
Karst genesis modelling is applied to a conceptual setting based on field observations from the Western Ukraine, where the major part of known gypsum caves is found. Gypsum layers are typically supplied by artesian flow of aggressive water from insoluble aquifers underneath. Processes and parameters, controlling solutional enlargement of single conduits under artesian conditions, are identified in detailed sensitivity analyses. The development of conduit networks is examined in parameter studies, suggesting that the evolution of maze caves is predetermined by structural preferences such as laterally extended fissure networks beneath a horizon less prone to karstification. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The structure of the mature conduit system is found to be determined during early karstification, which is characterised by high hydraulic gradients and low flow rates in the gypsum layer.
Short-term karst spring response after recharge events is firstly examined in parameter studies by forward modelling. The numerical simulations reveal that different controlling processes of heat and solute transport account for the different behaviour of water temperature and solute concentration frequently observed at karst springs. It is demonstrated that these differences may be employed to reduce the ambiguity in the aquifer characterisation.
In order to test the feasibility of the corresponding inverse approach, which aims at inferring aquifer properties from the karst spring response, the model is applied to a field site in Southern Germany (Urenbrunnen spring, Vohringen). Data input is provided by both literature and own field work. Several models, which reproduce the results of a combined tracer and recharge test, are calibrated to spring discharges and solute concentrations measured after a recharge event. In order to validate the calibrated models, the measured spring water temperatures are simulated by heat transport modelling. The model application yields information on aquifer properties as well as flow and transport processes at the field site. Advection is identified as the dominant transport process, whereas the dissolution reaction of gypsum is found to be insignificant in this case.
The application to gypsum aquifers demonstrates that both suggested approaches are suitable for the characterisation of karst systems. Model results, however, are highly sensitive to several input parameters, in particular in karst genesis modelling. Therefore, extensive field work is required to provide reliable data for site-specific model applications. In order to account for uncertainties, it is recommended to conduct parameter studies covering possible ranges of the most influential parameters.


Evaluation of a peat filtration system for treating highway runoff in a karst setting, 2003, Zhou W. F. , Beck B. F. , Green T. S. ,
The deleterious character of highway runoff, especially following long periods without precipitation, has been well documented in the literature. It transports hydrocarbons, heavy metals, and other contaminants from highways, contributing to the pollution of surface water and groundwater. Groundwater is particularly vulnerable in karst areas where highway runoff is transferred quickly into subsurface conduit networks through open sinkholes and/or sinking streams. The difficulties in remediating contaminated karst aquifers make it crucial for karst aquifers to receive only uncontaminated water. A peat filtration system was constructed at the I-40/I-640 interchange in eastern Knoxville, Tennessee, USA, to remove highway runoff contaminants prior to being transported into karst aquifers.- Recent field tests indicate that the system can significantly decrease the concentrations of analyzed constituents including PAHs (polyaromatic hydrocarbons), popper, and zinc. However, the removal efficiency depends on the concentration of the contaminants in the runoff. Long-term monitoring is required to determine the true effectiveness of the designed filtration system and its reliability

Numerical analysis of conduit evolution in karstic aquifers. PhD Thesis, 2003, Annable, W. K.

Fractured and solutionally enhanced carbonate aquifers supply approximately 20 percent of the Worlds potable water supply. Although in rare cases these geologic settings can geochemically evolve into conduits which are of sufficient size to be explored and interpreted by researchers, the majority of the solutionally enlarged networks providing fresh water supplies remain too small to be directly measured. As such, we rely upon indirect hydraulic testing and tracer studies to infer the complexity and size of such aquifers. Because solutionally enhanced (karstic) aquifers have multiple scales of porosity ranging from matrix flow, fracture flow and open channel conduit flow, they are particularly vulnerable to contamination due to the high rates of chemical transport. In this study, a numerical model which solves for the variably-saturated flow, chemically-reactive transport and sediment transport within fractured carbonate aquifers has been developed to investigate the evolution of proto conduits from discrete fractures towards the minimum limits of caves which can be explored. The model results suggest that, although potentiometric surfaces can be of assistance in forecasting the possible locations of proto conduits at depth, many conduits are never detected using conventional observation wells relying upon hydraulic head data. The model also demonstrates the strong dependence in the pattern of vertical jointing on how conduits may evolve: fractures oriented similar to the mean groundwater flow direction show conduits evolving along the vertical fracture orientation; however, vertical fractures that differ significantly from the mean groundwater flow direction have vastly more complex dissolution networks. The transport of fine-grained sediments within the fractures has been shown to reduce the rates of conduit development in all but the highest velocity regions, resulting in simplified conduit networks, but at accelerated dissolution rates. The fully-coupled advective-dispersive and reactive chemistry equations were employed strictly with equilibrium reactions to simulate calcite dissolution. This study further shows that higher order kinetics in the form of the kinetic trigger effect of White (1997) are not required if diffusion between the rock matrix and the fracture surfaces account for multi-component matrix diffusion effects between the evolving conduits and the carbonate rock matrix according to the diffusional characteristics of the fractured rock system at hand.


Karstic behaviour of groundwater in the English Chalk, 2006, Maurice L. D. , Atkinson T. C. , Barker J. A. , Bloomfield J. P. , Farrant A. R. , Williams A. T. ,
SummaryAlthough the Chalk is only weakly karstified, tracer testing from stream sinks has demonstrated groundwater flow velocities comparable to those observed in highly karstic aquifers. Field survey of surface karst features in the catchments of the Pang and Lambourn rivers in southern England demonstrates the importance of overlying and adjacent Palaeogene strata in the development of karst features. Tracer techniques employed within the catchments enable further characterisation of the range and connectivity of solutional voids in this area of the Chalk, and allow assessment of the relative importance of different mechanisms of contaminant attenuation. Quantitative tracer test results suggest that groundwater flow may be through a complex combination of small conduits, typically 10-1000 mm in diameter, and more laterally extensive fissures with apertures of 1-50 mm. Evidence of connectivity between conduits and fissures suggest that in areas of the Chalk with rapid groundwater flow, fissures supplying abstraction boreholes may be connected to karst conduit networks with low potential for contaminant attenuation

Tracer tests in karst hydrogeology and speleology, 2008, Goldscheider N. , Meiman J. , Pronk M And Smart C.
This article presents an introduction to the fundamentals of tracing techniques and their application in cave and karst environments, illustrated by case studies from the Mammoth Cave, USA, and a small experimental site in Switzerland. The properties and limitations of the most important artificial tracers are discussed, and the available methods of tracer injection, sampling, online monitoring and laboratory analysis are presented. Fully quantitative tracer experiments result in continuous or discrete concentration-time data series, i.e. breakthrough curves, and concomitant discharge data, which make it possible to obtain detailed information about groundwater flow and contaminant transport. Within the frame of speleological investigations, tracer tests can help to resolve the active and often inaccessible part of cave and conduit networks and to obtain indications about the geometry and volume of the conduits. For hydrogeological studies, caves can in turn be used as natural experimental and monitoring sites inside the unsaturated or saturated zone of karst aquifer systems.

Tracer tests in karst hydrogeology and speleology, 2008, Goldscheider N. , Meiman J. , Pronk M. , Smart C.

This article presents an introduction to the fundamentals of tracing techniques and their application in cave and karst environments, illustrated by case studies from the Mammoth Cave, USA, and a small experimental site in Switzerland. The properties and limitations of the most important artificial tracers are discussed, and the available methods of tracer injection, sampling, online monitoring and laboratory analysis are presented. Fully quantitative tracer experiments result in continuous or discrete concentration-time data series, i.e. breakthrough curves, and concomitant discharge data, which make it possible to obtain detailed information about groundwater flow and contaminant transport. Within the frame of speleological investigations, tracer tests can help to resolve the active and often inaccessible part of cave and conduit networks and to obtain indications about the geometry and volume of the conduits. For hydrogeological studies, caves can in turn be used as natural experimental and monitoring sites inside the unsaturated or saturated zone of karst aquifer systems.


Evidence of inception horizons in karst conduit networks, 2009, Filipponi M, Jeannin Py. , Tacher L.

This paper outlines the conclusion from an analysis of 18 large cave systems around the world, comprising more than 1500 km of conduits. The 3D geometry of complex cave systems have been analysed in relation to their geological context as well as their hydrogeological boundary conditions. The methodology allowed for the first time statistical evidence of the inception horizon concept. Thereby it confirms that the development of karst conduits under phreatic conditions is strongly related to a restricted number of so called inception horizons. An inception horizon is a part of a rock succession that is particularly susceptible to the development of karst conduits because of physical, lithological or chemical deviation from the predominant carbonate facies within the limestone sequence. It passively or actively favours the localisation of dissolutional voids. The methodology based on detailed geological 3D models and cave survey allowed us to demonstrate the existence of inception horizons in karst conduit genesis. This fact improves significantly the prediction of karst conduits, knowledge that is of relevance for geological engineering problems (e.g. tunnelling, oil industry, hydrogeology) as well as for the scientific understanding of the evolution of karst systems.


Karstification in the Cuddapah Sedimentary Basin, Southern India: Implications for Groundwater Resources, 2011, Dar Farooq Ahmad , Perrin Jerome, Riotte Jean , Gebauer Herbert Daniel, Narayana Allu Chinna, Ahmed Shakeel

The Cuddapah sedimentary basin extends over a significant part of the southern part of Andhra Pradesh State, Southern India. Proterozoic carbonate rocks in the basin are constituted by as three main units- the Vempalle dolomite, the Narji and Koilkuntla limestones. These carbonate rocks are of strategic im­portance for local communities as they provide the main water source for irrigation and domestic use and they are also inten­sively quarried for cement production and building stones. It is therefore, of primary importance to assess to which extent these carbonate units are karstified so as to provide recommendations for appropriate land and water resource management. The field investigations carried out indicate that these carbonate units are significantly karstified and karstification has been an ongo­ing process with several phases under variable climatic condi­tions. As a result, a significant part of aquifer recharge occurs as point-recharge through swallow-holes and groundwater flow is channelized by conduit networks which emerge at karst springs. Karst development was possibly more active during past humid conditions; however karstification is still an ongoing process under the present semi-arid climate especially in the favorable case where karst drains the runoff issued from upstream quartz­itic hills. The karstic nature of these carbonate units need to be integrated in future research and development programmes to avoid practices that may lead to unexpected collapses, reservoir leaks, inaccurate groundwater budgeting, etc.


The significance of turbulent flow representation in single-continuum models, 2011, Reimann T. , Rehrl C. , Shoemaker W. B. , Geyer T. , Birk S.

Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean ?0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be unimodal covering some orders of magnitudes in size. Under these suppressed flow conditions the entire range of apertures continues to be enlarged. Hence, the number of tubes reaching aperture sizes in the order of centimetres or decimetres continues to increase with time and in the long term may exceed the number of large-sized tubes evolving under competitive flow conditions. This suggests that conduit development under suppressed flow conditions may significantly enhance the permeability of the formation, e.g. in deep-seated carbonate settings.


Results 1 to 15 of 21
You probably didn't submit anything to search for