Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That bed, river is the channel of a river covered by water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for continuum model (Keyword) returned 10 results for the whole karstbase:
Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjšek spring, Slovenia, , Ravbar, N. , Engelhardt, I. , Goldscheider, N.

Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high-flow events in an 18-month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high-flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite-difference model including high-conductivity cells representing the conduit network (“discrete-continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high-flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions.

Parameter identification in double-continuum models applied to karst aquifers., 1997, Mohrlok U. , Kienie J. , Teutsch G.
One modelling approach which proved successful in describing the groundwater flow within karst terraines is based on the double-continuum concept. This concept was first introduced by Teutsch (1988) and subsequently used by Teutsch & Sauter (1991), Sauter (1992), Lang (1995), Mohrlok (1996) and others to describe the ambivalent characteristics of karst aquifers. However, the approach has the drawback that the double-continuum model parameters can be determined only through model calibration (inverse approach), i.e. so far the model parameters cannot be related directly to physical field measurements. Therefore, in order to develop a better understanding of the physical significance of hydraulic parameters within double-continuum systems, a detailed numerical modeling study was conducted. For this purpose a number of synthetic but realistic karst aquifer network geometries were generated and analysed. The response of the karst network to recharge events was simulated using a detailed discrete fracture flow model with the resulting head and spring flow variographs being subsequently assumed as field measurements. This 'measured' data was then used for the calibration of a double-continuum model and the resulting parameters were compared to the original karst network geometry data. This comparison was used to develop mathematical/physical relationships between the discrete karst network geometry representing reality and the double-continuum parameter representation of it.

Modelling groundwater flow in a karst terrane using discrete and double-continuum approaches - importance of spatial and temporal distribution of recharge., 1997, Mohrlok U. , Sauter M.
Groundwater flow had been modelled in the karst catchment area 'Gallusquelle' (Swabian Alb, SW-Germany) using two different types of modelling approaches. The discrete and the double-continuum model differ in their respective representation of the conduit network and the formulation of the exchange flux of groundwater between fissured system and conduits. In the case of the discrete ipproach this exchange is determined by local hydraulic properties adjacent to the conduits. The double-continuum approach represents this exchange using a 'steady state', lumped parameter. As a result of this fundamental difference between the two approaches, the temporal distribution as well as the percentual allocation of groundwater recharge to conduits and fissured system plays a major role in (the respective model calibration

Simulation of the development of karst aquifers by using a pipe flow model coupled to a continuum model, 2, Model verification and sensitivity analysis., 1998, Clemens T. , Huckinghaus D. , Sauter M. , Liedl R. , Teutsch G.

Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modeling., 2002, Cornaton F. , Perrochet P.

Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling, 2002, Cornaton F, Perrochet P,
One-dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems-such as karstic aquifers-using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented ID dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1D analytical dual-porosity model on reference hydraulic responses confirms the dependence of the exchange coefficient with the karstic network density. The use of the analytical model could also point out some fundamental structural properties of the karstic network that rule the shape of the hydraulic responses, such as density and connectivity. (C) 2002 Elsevier Science B.V. All rights reserved

Assessing the Vulnerability of a Municipal Well Field to Contamination in a Karst Aquifer, 2005, Renken R. A. , Cunningham K. J. , Zygnerski M. R. , Wacker M. A. , Shapiro A. M. , Harvey R. W. , Metge D. W. , Osborn C. L. , Ryan J. N. ,
Proposed expansion of extractive lime-rock mines near the Miami-Dade County Northwest well field and Everglades wetland areas has garnered intense scrutiny by government, public, environmental stakeholders, and the media because of concern that mining will increase the risk of pathogen contamination. Rock mines are excavated to the same depth as the well field's primary producing zone. The underlying karst Biscayne aquifer is a triple-porosity system characterized by (1) a matrix of interparticle porosity and separate vug porosity; (2) touching-vug porosity that forms preferred, stratiform passageways; and, less commonly, (3) conduit porosity formed by thin solution pipes, bedding-plane vugs, and cavernous vugs. Existing ground-water flow and particle tracking models do not provide adequate information regarding the ability of the aquifer to limit the advective movement of pathogens and other contaminants. Chemical transport and colloidal mobility properties have been delineated using conservative and microsphere-surrogate tracers for Cryptosporidium parvum. Forced-gradient tests were executed by introducing conservative tracers into injection wells located 100 m (328 ft) from a municipal-supply well. Apparent mean advective velocity between the wells is one to two orders of magnitude greater than previously measured. Touching-vug, stratiform flow zones are efficient pathways for tracer movement at the well field. The effective porosity for a continuum model between the point of injection and tracer recovery ranges from 2 to 4 percent and is an order of magnitude smaller than previously assumed. Existing well-field protection zones were established using porosity estimates based on specific yield. The effective, or kinematic, porosity of a Biscayne aquifer continuum model is lower than the total porosity, because high velocities occur along preferential flow paths that result in faster times of travel than can be represented with the ground-water flow equation. Tracer tests indicate that the relative ease of contaminant movement to municipal supply wells is much greater than previously considered

A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis, 2005, Kovacs A. , Perrochet P. , Kiraly L. , Jeannin P. Y. ,
This paper presents a method for characterizing flow systems in karst aquifers by acquiring quantitative information about the geometric and hydraulic aquifer parameters from spring hydrograph analysis. Numerical sensitivity analyses identified two fundamentally different flow domains, depending on the overall configuration of aquifer parameters. These two domains have been quantitatively characterized by deducing analytical solutions for the global hydraulic response of simple two-dimensional model geometries. During the baseflow recession of mature karst systems, the hydraulic parameters of karst conduits do not influence the drainage of the low-permeability matrix. In this case the drainage process is influenced by the size and hydraulic parameters of the low-permeability blocks alone. This flow condition has been defined as matrix-restrained flow regime (MRFR). During the baseflow recession of early karst systems and fissured systems, as well as the flood recession of mature systems, the recession process depends on the hydraulic parameters and the size of the low-permeability blocks, conduit conductivity and the total extent of the aquifer. This flow condition has been defined as conduit-influenced flow regime (CIFR). Analytical formulae demonstrated the limitations of equivalent models. While equivalent discrete-continuum models of early karst systems may reflect their real hydraulic response, there is only one adequate parameter configuration for mature systems that yields appropriate recession coefficient. Consequently, equivalent discrete-continuum models are inadequate for simulating global response of mature karst systems. The recession coefficient of equivalent porous medium models corresponds to the transition between matrix-restrained and conduit-influenced flow. Consequently, equivalent porous medium models yield corrupted hydrographs both in mature and early systems, and this approach is basically inadequate for modelling global response of karst aquifers. (c) 2004 Elsevier B.V. All rights reserved

Interpretation of pumping tests in a mixed flow karst system, 2008, Maré, Chal J. C. Ladouche B. Dö, Rfliger N. & Lachassagne P.

A long-duration pumping test performed in the conduit of a mixed flow karst system (MFKS) is analyzed and interpreted. It constitutes a unique experiment of catchment wide response of a karst system, with drawdowns measured both in the pumped conduit and in the matrix. A modeling approach is proposed for this interpretation. The developed double continuum model consists of two reservoirs - karst conduits and the surrounding carbonate rocks - between which flow exchange is modeled using the superposition principle and the hypothesis of Darcian flow in the matrix considered as an equivalent porous media. The karst conduits are assumed to have an infinite hydraulic conductivity. Model calibration results in a very good match (relative root mean square [rRMS] = 2.3 %) with drawdown measured at the pumping well (karst conduit). It shows that the matrix hydrodynamic parameters (hydraulic conductivity and storativity) have a greater influence on the drawdown than the storage capacity of the conduit network. The accuracy of the model relies mostly on a very good knowledge of both pumping rate and natural discharge at the spring (with and without pumping). This type of approach represents an advance in double continuum modeling of karst systems. It also provides a methodology for the management of water resources from karst aquifers.

The significance of turbulent flow representation in single-continuum models, 2011, Reimann T. , Rehrl C. , Shoemaker W. B. , Geyer T. , Birk S.

Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean ?0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be unimodal covering some orders of magnitudes in size. Under these suppressed flow conditions the entire range of apertures continues to be enlarged. Hence, the number of tubes reaching aperture sizes in the order of centimetres or decimetres continues to increase with time and in the long term may exceed the number of large-sized tubes evolving under competitive flow conditions. This suggests that conduit development under suppressed flow conditions may significantly enhance the permeability of the formation, e.g. in deep-seated carbonate settings.

Results 1 to 10 of 10
You probably didn't submit anything to search for