Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That gypsum flower is see cave flower.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for corrosion residues (Keyword) returned 4 results for the whole karstbase:
BACTERIA, FUNGI AND BIOKARST IN LECHUGUILLA CAVE, CARLSBAD-CAVERNS-NATIONAL-PARK, NEW-MEXICO, 1995, Cunningham Ki, Northup De, Pollastro Rm, Wright Wg, Larock Ej,
Lechuguilla Cave is a deep, extensive, gypsum- and sulfur-bearing hypogenic cave in Carlsbad Caverns National Park, New Mexico, most of which (> 90%) lies more than 300 m beneath the entrance. Located in the arid Guadalupe Mountains, Lechuguilla's remarkable state of preservation is partially due to the locally continuous Yates Formation siltstone that has effectively diverted most vadose water away from the cave. Allocthonous organic input to the cave is therefore very limited, but bacterial and fungal colonization is relatively extensive: (1) Aspergillus sp. fungi and unidentified bacteria are associated with iron-, manganese-, and sulfur-rich encrustations on calcitic folia near the suspected water table 466 m below the entrance; (2) 92 species of fungi in 19 genera have been identified throughout the cave in oligotrophic (nutrient-poor) ''soils'' and pools; (3) cave-air condensate contains unidentified microbes; (4) indigenous chemoheterotrophic Seliberius and Caulobacter bacteria are known from remote pool sites; and (5) at least four genera of heterotrophic bacteria with population densities near 5 x 10(5) colony-forming units (CFU) per gram are present in ceiling-bound deposits of supposedly abiogenic condensation-corrosion residues. Various lines of evidence suggest that autotrophic bacteria are present in the ceiling-bound residues and could act as primary producers in a unique subterranean microbial food chain. The suspected autotrophic bacteria are probably chemolithoautotrophic (CLA), utilizing trace iron, manganese, or sulfur in the limestone and dolomitic bedrock to mechanically (and possibly biochemically) erode the substrate to produce residual floor deposits. Because other major sources of organic matter have not been detected, we suggest that these CLA bacteria are providing requisite organic matter to the known heterotrophic bacteria and fungi in the residues. The cavewide bacterial and fungal distribution, the large volumes of corrosion residues, and the presence of ancient bacterial filaments in unusual calcite speleothems (biothems) attest to the apparent longevity of microbial occupation in this cave

Extraordinary Features of Lechuguilla Cave, Guadalupe Mountains, New Mexico, 2000, Davis, D. G.
Many unusual features are displayed in Lechuguilla Cave, Guadalupe Mountains, New Mexico, U.S.A. Early speleogenic features related to a sulfuric acid origin of the cave include acid lake basins and subterranean karren fields. Speleogenetic deposits, also products of sulfuric acid origin, include gypsum glaciers and sulfur masses. Features related to convective atmospheric phenomena in the cave include corrosion residues, rimmed vents, and horizontal corrosion/deposition lines. Speleothems of nonstandard origin include rusticles, pool fingers, subaqueous helictites, common-ion-effect stalactites, chandeliers, long gypsum hair, hydromagnesite fronds, folia, and raft cones. Other unusual features discussed are silticles and splash rings.

Evidence for Geomicrobiological Interactions in Guadalupe Caves, 2000, Northup, D. E. , Dahm, C. N. , Melim, L. A. , Spilde, M. N. , Crossey, L. J. , Lavoie, K. H. , Mallory, L. M. , Boston, P. J. , Cummingham, K. I. , Barns, S. M.
Caves in the Guadalupe Mountains offer intriguing examples of possible past or present geomicrobiological interactions within features such as corrosion residues, pool fingers, webulites, u-loops, and moonmilk. Scanning electron microscopy, transmission electron microscopy, molecular biology techniques, enrichment cultures, bulk chemistry, and X-ray diffraction techniques have revealed the presence of iron- and manganese-oxidizing bacteria in corrosion residues, which supports the hypothesis that these organisms utilize reduced iron and manganese from the limestone, leaving behind oxidized iron and manganese. Metabolically active populations of bacteria are also found in punk rock beneath the corrosion residues. Microscopic examination of pool fingers demonstrates that microorganisms can be inadvertently caught and buried in pool fingers, or can be more active participants in their formation. Enrichment cultures of moonmilk demonstrate the presence of a variety of microorganisms. Humans can have a deleterious impact on microbial communities in Guadalupe caves

Geomicrobiology of caves: A review, 2001, Northup D. E. , Lavoie K. H. ,
In this article, we provide a review of geomicrobiological interactions in caves, which are nutrient-limited environments containing a variety of redox interfaces. Interactions of cave microorganisms and mineral environments lead to the dissolution of, or precipitation on, host rock and speleothems (secondary mineral formations). Metabolic processes of sulfur-, iron-, and manganese-oxidizing bacteria can generate considerable acidity, dissolving cave walls and formations. Examples of possible microbially influenced corrosion include corrosion residues (e.g., Lechuguilla and Spider caves, New Mexico, USA), moonmilk from a number of caves (e.g., Spider Cave, New Mexico, and caves in the Italian Alps), and sulfuric acid speleogenesis and cave enlargement (e.g., Movile Cave, Romania, and Cueva de Villa Luz, Mexico). Precipitation processes in caves, as in surface environments, occur through active or passive processes. In caves, microbially induced mineralization is documented in the formation of carbonates, moonmilk, silicates, clays, iron and manganese oxides, sulfur, and saltpeter at scales ranging from the microscopic to landscape biokarst. Suggestions for future research are given to encourage a move from descriptive, qualitative studies to more experimental studies

Results 1 to 4 of 4
You probably didn't submit anything to search for