Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That water works is a plant where water is treated and prepared for municipal consumption [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for craton (Keyword) returned 18 results for the whole karstbase:
Showing 1 to 15 of 18
Une morphologie karstique typique en zone intertropicale : les karsts du Bas Zare, 1985, Quinif, Y.
A TYPICAL MORPHOLOGY OF TROPICAL KARSTS: THE KWILU BASIN IN THE LOWER-ZAIRE - The Kwilu basin, in the region of Bas-Zaire, shows typical landscapes of tropical karsts: cone and tower karsts shaped in precambrian limestones of the "Groupe schisto-calcaire". These precambrian series are little tectonised. They are covered with cenozoic formations which are important in the evolution of the karst. Different types of cavities are studied and replaced in the morphostructural context: old caves, originating in phreatic zone and now cut by the erosion, river streams in tunnel-caves, network under the water table. The superficial forms are interpreted as successive evolutive steps: dissection of a surface (morphological or structural) by a dendritic hydrographic network, birth of a cone-karst being transformed in tower-karst overlooking a new surface. We insist on the morphogenetic importance of the paleoclimatic changes and on the existence of an intertropical karstic morphology in stable craton.

La grotte de Mbilibekon, un pseudo-karst dans la couverture latritique du craton du Congo (Ebolowa, Cameroun), 1995, Vicat J. P. , Leger J. M. , Lips B. , Lips J. , Piguet P.
The Mbilibekon cave, located in the Ebolowa area, is part of a pseudo-karstic network developed in the lateritic alteration cover of the Ntem basement. The surveyed network, 220 m long, is the largest in Cameroon. Numerous bats (Rhinolophus) live in this cave. The network directions are similar to the basement faulting which drains the phreatic water table. The age of the pseudo-karst is probably younger than the dry climatic episode that occurred in Cenfral Africa near 2,500 years BP.

THE EARLY PROTEROZOIC MISSISSIPPI VALLEY-TYPE PB-ZN-F DEPOSITS OF THE CAMPBELLRAND AND MALMANI SUBGROUPS, SOUTH-AFRICA - A REVIEW, 1995, Martini J. E. J. , Eriksson P. G. , Snyman C. P. ,
Pb-Zn-F deposits occur in the very late Archaean (2.55 Ga) shallow marine dolostone of the relatively undeformed Campbellrand and Malmani Sub-groups, which are overlain unconformably by the lower Proterozoic Postmasburg and Pretoria Group siliciclastics. They consist of stratiform deposits formed by replacement and porosity-filling, as well as pipes, ring-shaped and irregular bodies associated with collapse breccia. In the Transvaal basin the latter were generated during the karst denudation period between the deposition of the Chuniespoort Group (ending at similar to 2.4 Ga) and of the Pretoria Group (starting at 2.35 Ga). A part of these mineralisations were overprinted by the metamorphism of the Bushveld Complex intrusion at 2.06 Ga. In the Transvaal basin, the age of the mineralisation is constrained between the start of the Pretoria Group deposition and the Bushveld intrusion. It is concluded that, although most of the mineralisations are characteristic of the Mississippi Valley-type, some of the northernmost occurrences, rich in siderite, are less typical. A classic genetic model is proposed. In an environment characterised by tensional tectonics and basin development, brines of basinal origin were heated by circulation into pre-Chuniespoort rocks, leached metals from the rocks they permeated, and rose as hydrothermal plumes. At relatively shallow depth they deposited minerals after mixing with water of surficial origin

An overview of the geology of the Transvaal Supergroup dolomites (South Africa), 1998, Eriksson Pg, Altermann W,
In the Neoarchaean intracratonic basin of the Kaapvaal craton, between approximately 2640 Ma and 2516 Ma, two successive stromatolitic carbonate platforms developed. Deposition started with the Schmidtsdrif Subgroup, which is probably oldest in the southwestern part of the basin, and which contains stromatolitic carbonates, siliciclastic sediments and minor lava flows. Subsequently, the Nauga formation carbonates were deposited on peritidal flats located to the southwest and were drowned during a transgression of the Transvaal Supergroup epeiric sea, around 2550 Ma ago. This transgression led to the development of a carbonate platform in the areas of the preserved Transvaal and Griqualand West basins, which persisted for 30-50 Ma. During this time, shales were deposited over the Nauga Formation carbonates in the south-western portion of the epeiric sea. S subsequent period of basin subsidence led to drowning of the stromatolitic platform and to sedimentation of chemical, iron-rich silica precipitates of the banded iron formations (BIF) over the entire basin. Carbonate precipitation in the Archaean was largely due to chemical and lesser biogenic processes, with stromatolites and ocean water composition playing an important role. The stromatolitic carbonates in the preserved Griqualand West and Transvaal basins are subdivided into several formations, based on the depositional facies, reflected by stromatolite morphology, and on a intraformational unconformities; interbedded tuffs and available radiometric age data do not ye permit detailed correlation of units from the two basins. Thorough dolomitisation of most formations took place at different post-depositional stages, but mainly during early diagenesis. Partial silification was the result of diagenetic and weathering processes. Karstification of the carbonate rocks was related to periods of exposure to subaerial conditions and to percolation of groundwater. Such periods occurred locally at the time of carbonate and BIF deposition. Main karstification, however, probably took place during an erosional period between approximately 2430 Ma and 2320 Ma

Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia, 1998, Vearncombe S. , Vearncombe J. R. , Barley M. E. ,
Early Archaean, Fe-Zn-Cu volcanogenic massive sulphide deposits of the Strelley Belt, Pilbara Craton. occur at the top of a volcanic dominated sequence, at the interface of felsic volcanic rucks and siliceous laminites, beneath an unconformity overlain by elastic sedimentary rocks. The structure of the Sulphur Springs and Kangaroo Caves VMS deposits is relatively simple, with the present morphology reflecting original deposition rather than significant structural modification. The rocks have been tilted giving an oblique cross-sectional view of discordant high-angle, deep penetrating faults in the footwall, which splay close to the zones of voltcanogenic massive sulphide mineralization. Faults do not extend far into the overlying sedimentary cover, indicating their syn-volcanic and syn-mineralization timing. Both the Sulphur Springs and Kangaroo Caves sulphide deposits are located within elevated grabens in a setting similar to massive sulphide mineralization in modern back-are environments. Mineralization at Sulphur Springs and Kangaroo Caves is located at the edge of the grabens, at the site of intersecting syn-volcanic extensional faults.

Speleogenesis of the Botovskaya Cave, Eastern Siberia, Russia, 2000, Filippov A. G.
Botovskaya Cave is located in the Angaro-Lensky artesian basin in the southern Siberian craton, Russia. It developed under confined conditions in the 6-12 m thick Ordovician limestone strata. The cave is a subhorizontal, two-dimensional maze 32 km long. The limestone beds are confined above and below by massive marine sandstones which contain thick silty and argilaceous layers. Cave passages are guided by an orthogonal fissure system. Embryonic passages are tube-shaped with oval and round cross sections. The mature passages are corridor-like with wide low notches at their bases between sandstone beds. The cave system probably originated due to mixing corrosion involving meteoric artesian waters flowing from a major recharge area, and ascending waters migrating toward surface valleys from underlying artesian aquifers.

Existence of karsts into silicated non-carbonated crystalline rocks in Sahelian and Equatorial Africa, hydrogeological implications, 2002, Willems Luc, Pouclet Andre, Vicat Jean Paul,
Various cavities studied in western Niger and South Cameroon show the existence of important karstic phenomena into metagabbros and gneisses. These large-sized caves resulted from generalized dissolution of silicate formations in spite of their low solubility. Karstification is produced by deep hydrous transfer along lithological discontinuities and fracture net works. The existence of such caves has major implications in geomorphology, under either Sahelian and Equatorial climate, and in hydrogeology and water supply, particularly in the Sahel area. Introduction. - Since a few decades, several karst-like morphologies are described in non-carbonated rocks (sandstones, quartzites, schistes, gneisses...) [Wray, 1997 ; Vicat and Willems, 1998 ; Willems, 2000]. The cave of Guessedoundou in West Niger seems to be due to a large dissolution of metagabbros. The cave of Mfoula, South Cameroon, attests for the same process in gneisses. This forms proof that big holes may exist deeper in the substratum even of non-carbonated silicate rocks. Their size and number could mainly influence the landscape and the hydrogeology, especially in the Sahelian areas. Guessedoundou, a cave into metagabbros in West Niger. - The site of Guessedoundou is located 70 km south-west of Niamey (fig. 1). The cave is opened at the top of a small hill, inside in NNE-SSW elongated pit (fig. 2 ; pl. I A). The hole, 3 to 4 m deep and 20 m large, has vertical walls and contains numerous sub-metric angular blocks. A cave, a few meters deep, comes out the south wall. Bedrocks consist of metagabbros of the Makalondi greenstone belt, a belt of the Palaeoproterozoic Birimian Formations of the West Africa craton [Pouclet et al., 1990]. The rock has a common granular texture with plagioclases, partly converted in albite and clinozoisite, and pyroxenes pseudomorphosed in actinote and chlorite. It is rather fairly altered. Chemical composition is mafic and poorly alkaline (tabl. I). A weak E-W schistosity generated with the epizonal thermometamorphism. The site depression was created along a N010o shear zone where rocks suffered important fracturation and fluid transfers, as shown by its silification and ferruginisation. The absence of human activity traces and the disposition of the angular blocks attest that the pit is natural and was due to the collapse of the roof of a vast cavity whose current cave is only the residual prolongation. To the vertical walls of the depression and at the cave entry, pluridecimetric hemispheric hollows are observed (pl. I B). Smooth morphology and position of these hollows sheltered within the depression dismiss the assumptions of formation by mechanical erosion. In return, these features are typical shape of dissolution processes observed into limestone karstic caves. That kind of process must be invoked to explain the opening of the Guessedoundou cave, in the total lack of desagregation materials. Dissolution of metagabbro occurred during hydrous transfer, which was probably guided by numerous fractures of the shear zone. Additional observations have been done in the Sirba Valley, where similar metabasite rocks constitute the substratum, with sudden sinking of doline-like depressions and evidence of deep cavities by core logging [Willems et al., 1993, 1996]. It is concluded that karstic phenomena may exist even in silica-aluminous rocks of crystalline terrains, such as the greenstones of a Precambrian craton. Mfoula a cave into gneisses in South Cameroon. - The cave of Mfoula is located 80 km north-east of Yaounde (fig. 3). It is the second largest cave of Cameroon, more than 5,000 m3, with a large opening in the lower flank of a deep valley (pl. I C). The cavity is about 60 m long, 30 m large and 5 to 12 m high (fig. 4; pl. I D). It is hollowed in orthogneisses belonging to the Pan-African Yaounde nappe. Rocks exhibit subhorizontal foliation in two superposed lithological facies: the lower part is made of amphibole- and garnet-bearing layered gneisses, and the upper part, of more massive granulitic gneisses. Average composition is silico-aluminous and moderately alkaline (tabl. I). The cave is made of different chambers separated by sub-cylindrical pillars. The ceiling of the main chamber, 6 m in diameter, is dome-shaped with a smooth surface (D, fig. 4). The walls have also a smooth aspect decorated with many hemispherical hollows. The floor is flat according to the rock foliation. They are very few rock debris and detrital fragments and no traces of mechanical erosion and transport. The general inner morphology is amazingly similar to that of a limestone cave. The only way to generate such a cavity is to dissolve the rock by water transfer. To test the effect of the dissolution process, we analysed a clayey residual sampled in an horizontal fracture of the floor (tabl. I). Alteration begins by plagioclases in producing clay minerals and in disagregating the rock. However, there is no more clay and sand material. That means all the silicate minerals must have been eliminated. Dissolution of silicates is a known process in sandstone and quartzite caves. It may work as well in gneisses. To fasten the chemical action, we may consider an additional microbial chemolitotrophe activity. The activity of bacteria colonies is known in various rocks and depths, mainly in the aquifer [Sinclair and Ghiorse, 1989 ; Stevens and McKinley, 1995]. The formation of the Mfoula cave is summarized as follow (fig. 5). Meteoric water is drained down along sub-vertical fractures and then along horizontal discontinuities of the foliation, particularly in case of lithological variations. Chemical and biological dissolution is working. Lateral transfers linked to the aquifer oscillations caused widening of the caves. Dissolved products are transported by the vertical drains. Regressive erosion of the valley, linked to the epeirogenic upwelling due to the volcano-tectonic activity of the Cameroon Line, makes the cavities come into sight at the valley flanks. Discussion and conclusion. - The two examples of the Guessedoundou and Mfoula caves evidence the reality of the karsts in non-carbonated silicated rocks. The karst term is used to design >> any features of the classical karst morphology (caves, dolines, lapies...) where dissolution plays the main genetical action >> [Willems, 2000]. Our observations indicate that (i) the karst genesis may have occurred into any kind of rocks, and (ii) the cave formation is not directly dependent of the present climate. These facts have major consequences to hydrogeological investigations, especially for water supply in Sahelian and sub-desertic countries. Some measurements of water transfer speed across either sedimentary pelitic strata of the Continental terminal or igneous rocks of the substratum in West Niger [Esteves and Lenoir, 1996 ; Ousmane et al., 1984] proved that supplying of aquifers in these silico-aluminous rocks may be as fast as in a karstic limestone. That means the West Niger substratum is highly invaded by a karstic net and may hidden a lot of discontinuous aquifers. The existence of this karst system can be easily shown by morphological observations, the same that are done in karstic limestone regions (abnormally suspended dry valleys, collapses, dolines...). Clearly, this must be the guide for any search of water, even in desertic areas where limestones are absent

Fluvial incision rates derived from magnetostratigraphy of cave sediments in the cratonic area of eastern Brazil, 2002, Auler A. S. , Smart P. L. , Tarling D. H. , Farrant A. R.

Fallen arches: Dispelling myths concerning Cambrian and Ordovician paleogeography of the Rocky Mountain region, 2003, Myrow Paul M. , Taylor John F. , Miller James F. , Ethington Raymond L. , Ripperdan Robert L. , Allen Joseph,
High-resolution sedimentologic, biostratigraphic, and stable isotope data from numerous measured sections across Colorado reveal a complex architecture for lower Paleozoic strata in the central Cordilleran region. A lack of precise age control in previous studies had resulted in misidentification and miscorrelation of units between separate ranges. Corrections of these errors made possible by our improved data set indicate the following depositional history. The quartz-rich sandstone of the Sawatch Formation was deposited during onlap of the Precambrian erosion surface in the early Late Cambrian. The overlying Dotsero Formation, a regionally extensive carbonate- and shale-rich succession records blanket-like deposition with only minor facies changes across the state. An extremely widespread, meter-scale stromatolite bed, the Clinetop Bed, caps the Dotsero Formation in most areas. However, a latest Cambrian erosional episode removed 9-11 m of the upper Dotsero Formation, including the Clinetop Bed, from just east of the Homestake shear zone in the Sawatch Range eastward to the Mosquito Range. The overlying Manitou Formation differs in character, and thus in member stratigraphy, on the east vs. west sides of the state. These differences were previously interpreted as the result of deposition on either side of a basement high that existed within the Central Colorado Embayment or Colorado 'Sag,' a region of major breaching across the Transcontinental Arch. This paleogeographic reconstruction is shown herein to be an artifact of miscorrelation. Biostratigraphic data show that the northwestern members of the Manitou Formation are older than the members exposed in the southeastern part of the state and that there is little or no overlap in age between the two areas. This circumstance is the result of (1) removal of older Manitou Formation strata in the southeast by an unconformity developed during the Rossodus manitouensis conodont Zone, and (2) erosion of younger Manitou strata in central and western Colorado along Middle Ordovician and Devonian unconformities. Deciphering these complex stratal geometries has led to invalidation of long-held views on western Laurentian paleogeography during the Cambrian and earliest Ordovician, specifically the existence of the Colorado Sag and a northeast-trending high within the sag that controlled depositional patterns on either side. The mid- Rossodus uplift and resultant unconformity eliminated any and all Upper Cambrian and Lower Ordovician deposits in southern Colorado and northern New Mexico, and thus their absence should not be misconstrued as evidence for earlier nondeposition in this region. Lithofacies distribution patterns and isopach maps provide no evidence that highlands of the Transcontinental Arch existed in Colorado prior to the mid-Rossodus age uplift event. In fact, regional reconstructions of earliest Paleozoic paleogeography along the entire length of the purported Transcontinental Arch should be reevaluated with similarly precise biostratigraphic data to reconsider all potential causes for missing strata and to eliminate topographic elements not supported by multiple stratigraphic techniques. This study illustrates how seriously paleogeographic reconstructions can be biased by the presumption that missing strata represent periods of nondeposition rather than subsequent episodes of erosion, particularly in thin cratonic successions where stratigraphic gaps are common and often inconspicuous

The Barremian-Aptian Evolution of The Eastern Arabian Carbonate Platform Margin (Northern Oman), 2003, Hillgartner Heiko, Van Buchem Frans S. P. , Gaumet Fabrice, Razin Philippe, Pittet Bernard, Grotsch Jurgen, Droste Henk,
Carbonate platform margins are sensitive recorders of changes in sea level and climate and can reveal the relative importance of global and regional controls on platform evolution. This paper focuses on the Barremian to Aptian interval (mid Cretaceous), which is known for climatic and environmental changes towards more intensified greenhouse conditions. The study area in the northern Oman mountains offers one of the very few locations where the Cretaceous carbonate margin of the Arabian Plate can be studied along continuous outcrops. Our detailed sedimentological and sequence stratigraphic model of the platform margin demonstrates how major environmental and ecological changes controlled the stratigraphic architecture. The Early Cretaceous platform margin shows high rates of progradation in Berriasian to Hauterivian times followed by lower rates and some aggradation in the Late Hauterivian to Barremian. High-energy bioclastic and oolitic sands were the dominant deposits at the margin. Turbidites were deposited at the slope and in the basin. The Early Aptian platform margin shows a marked change to purely aggradational geometries and a welldeveloped platform barrier that was formed mainly by microbial buildups. The sudden dominance in microbial activity led to cementation and stabilization of the margin and slope and, therefore, a decrease of downslope sediment transport by turbidites. In the Late Aptian, large parts of the Arabian craton were subaerially exposed and a fringing carbonate platform formed. Seven Barremian to Early Albian large-scale depositional sequences reflecting relative sea-level changes are identified on the basis of time lines constrained by physical correlation and biostratigraphy. The reconstruction of the margin geometries suggests that tectonic activity played an important role in the Early Aptian. This was most likely related to global plate reorganization that was accompanied by increased volcanic activity in many parts of the world. Along the northeastern Arabian platform the associated global changes in atmospheric and oceanic circulation are recorded with a change in platform-margin ecology from an ooid-bioclast dominated to a microbial dominated margin. Time-equivalent argillaceous deposits suggest an increase in rainfall and elevated input of nutrients onto the platform. This process contributed to the strongly diminished carbonate production by other organisms and favored microbial activity. The platform margin may thus represent a shallow-marine response to the Early Aptian global changes, commonly associated with an oceanic anoxic event in basinal environments

Silicification of riphean carbonate sediments (Yurubcha-Tokhomo zone, Siberian Craton), 2005, Kuznetsov V. G. , Skobeleva N. M. ,
Types and lateral and vertical distribution of silicification in Riphean (largely dolomitic) rocks of the Yurubcha-Tokhomo zone of the Siberian Craton are discussed. It is shown that quartz and pyroclastic material in sediments were subjected to intense dissolution in a highly alkaline Riphean basin with the release of silica. Rapid and abrupt decrease in alkalinity during hiatus and desiccation periods resulted in the precipitation of dissolved silica and silicification of near-surface sediments. Lateral distribution of silicification was controlled by the redistribution of silica during the pre-Vendian hiatus, when surface waters were filtered through a carbonate massif with the simultaneous karst formation and silica dissolution. In the water discharge area, secondary silica was precipitated owing to changes in pH values and other physicochemical conditions

Australian Zn-Pb-Ag Ore-Forming Systems: A Review and Analysis, 2006, Huston David L. , Stevens Barney, Southgate Peter N. , Muhling Peter, Wyborn Lesley,
Zn-Pb-Ag mineral deposits are the products of hydrothermal ore-forming systems, which are restricted in time and space. In Australia, these deposits formed during three main periods at ~2.95, 1.69 to 1.58, and 0.50 to 0.35 Ga. The 1.69 to 1.58 Ga event, which accounts for over 65 percent of Australia's Zn, was triggered by accretion and rifting along the southern margin of Rodinia. Over 93 percent of Australia's Zn-Pb-Ag resources were produced by four ore-forming system types: Mount Isa (56% of Zn), Broken Hill (19%), volcanic-hosted massive sulfide (VHMS; 12%), and Mississippi Valley (8%). Moreover, just 4 percent of Australia's land mass produced over 80 percent of its Zn. The four main types of ore-forming systems can be divided into two 'clans,' based on fluid composition, temperature, and redox state. The Broken Hill- and VHMS-type deposits formed from high-temperature (>200{degrees}C) reduced fluids, whereas the Mount Isa- and Mississippi Valley-type deposits formed from low-temperature (<200{degrees}C), H2S-poor, and/or oxidized fluids. The tectonic setting and composition of the basins that host the ore-forming systems determine these fluid compositions and, therefore, the mineralization style. Basins that produce higher temperature fluids form in active tectonic environments, generally rifts, where high heat flow produced by magmatism drives convective fluid circulation. These basins are dominated by immature siliciclastic and volcanic rocks with a high overall abundance of Fe2. The high temperature of the convective fluids combined with the abundance of Fe2 in the basin allow inorganic sulfate reduction and leaching of sulfide from the country rock, producing reduced, H2S-rich fluids. Basins that produce low-temperature fluids are tectonically less active, generally intracratonic, extensional basins dominated by carbonate and variably mature siliciclastic facies with a relatively low Fe2 abundance. In these basins, sediment maturity depends on the paleogeography and stratigraphic position in an accommodation cycle. Volcanic units, if present, occur in the basal parts of the basins. Because these basins have relatively low heat flow, convective fluid flow is less important, and fluid migration is dominated by expulsion of basinal brines in response to local and/or regional tectonic events. Low temperatures and the lack of Fe2 prevent in-organic sulfate reduction during regional fluid flow, producing H2S-poor fluids that are commonly oxidized (i.e., {sum}SO4 > {sum}H2S). Fluid flow in the two basin types produces contrasting regional alteration systems. High-temperature fluid-rock reactions in siliciclastic-volcanic-dominated basins produce semiconformable albite-hematite-epidote assemblages, but low-temperature reactions in carbonate-siliciclastic-dominated basins produce regional K-feldspar-hematite assemblages. The difference in feldspar mineralogy is mostly a function of temperature. In both basin types, regional alteration zones have lost, and probably were the source of, Zn and Pb. The contrasting fluid types require different depositional mechanisms and traps to accumulate metals. The higher temperature, reduced VHMS- and Broken Hill-type fluids deposit metals as a consequence of mixing with cold seawater. Mineralization occurs at or near the sea floor, with trapping efficiencies enhanced by sub-surface replacement or deposition in a brine pool. In contrast, the low-temperature, oxidized Mount Isa- and Mississippi Valley-type fluids precipitate metals through thermochemical sulfate reduction facilitated by hydrocarbons or organic matter. This process can occur at depth in the rock pile, for instance in failed petroleum traps, or just below the sea floor in pyritic, organic-rich muds

STYLES OF HYPOGENE CAVE DEVELOPMENT IN ANCIENT CARBONATE AREAS OVERLYING NON-PERMEABLE ROCKS IN BRAZIL AND THE INFLUENCE OF COMPETING MECHANISMS AND LATER MODIFYING PROCESSES, 2009, Augusto S. Auler

A significant proportion of the karst areas in Brazil develop over ancient cratonic or tectonically stable zones overlying Precambrian quartzites or Archaean crystalline basement (granite, gneiss, schist). In such settings, due to the low transmissivity and highly anisotropic nature of the bedrock, major groundwater flow of regional scale tends to be restricted, and diffuse ascending cross-formational flow into the carbonate is limited to a few favourable input zones. Nevertheless, caves displaying hypogene features occur in several areas, although few contain the full suite of speleogenetic forms commonly found in “classic” better studied areas of Europe and North America. Major known hypogene caves in Brazil tend to be located in zones bordering the more stable cratonic areas, such as in Vazante and Toca da Boa Vista karst areas, where fault zones are likely candidates for providing ascending flow paths towards the carbonate. The absence of transmissive beds above the carbonate limits the existence of outflow routes. Brazilian hypogene caves develop in mostly horizontally bedded or gently dipping bedrock and typically do not display the three-dimensional character of many hypogene caves elsewhere. The speleogenetic role of competing mechanisms such as sulphuric acid dissolution due to pyrite oxidation and condensation corrosion tend to overprint original forms as well as produce similar convergent features.


The use of a karstic cave system in a study of active tectonics: fault displacements recorded at Driny Cave, Male Karpaty Mts (Slovakia), 2011, Briestensky Milos, Stemberk Josef, Michalik Jozef, Bella Pavel, Rowberry Matt D.

This paper reports on a study of active tectonics undertaken in the intracratonic setting of central Europe in the junction zone between Eastern Alps and Western Carpathians. The study site is focused on the karstic system of Driny Cave in the Male Karpaty Mts, Slovakia. A range of geological, geomorphological, and in situ displacement data are presented. From previous geological mapping and our slickenside analyses, it is clear that the cave system has developed along significant fault structures. Further geomorphological investigations pointed towards ongoing faulting and block movements. For example, a number of slope failures can be seen on the hillsides above the cave and numerous fresh speleothem breaks can be observed within the cave. To test this hypothesis, three optical-mechanical crack gauges were installed in 2005. These gauges confirmed and quantified the ongoing movements. The NNE-SSW striking fault has recorded a strike-slip trend of 0.1 mm/year and a normal fault trend of 0.03 mm/year. The NW-SE striking fault has recorded a strike-slip trend of 0.04 mm/year. In addition, it has been possible to define their precise kinematics. Moreover, different strike-slip mechanisms along two transverse fault systems point to a horizontal stress field orientation. These results confirm the existence of active tectonic structures within central Europe. It is considered that the methodology described here can also be applied in other intracratonic settings where karstic cave systems are present. This would help define potentially seismogenic areas where unambiguous evidence for active faulting is lacking.


Hydrogeological approach to distinguishing hypogene speleogenesis settings, 2013, Klimchouk, A. B.

The hydrogeological approach to defining hypogene speleogenesis (HS) relates it to ascending groundwater flow (AF). HS develops where AF causes local disequilibria conditions favoring dissolution and supports them during sufficiently long time in course of the geodynamic and hydrogeological evolution. The disequilibrium conditions at depth are invoked by changing physical-chemical parameters along an AF paths, or/and by the interaction between circulation systems of different scales and hydrody-namic regimes. The association of HS with AF suggests a possibility to discern regulari-ties of development and distribution of HS from the perspectives of the regional hy-drogeological analysis. In mature artesian basins of the cratonic type, settings favorable for AF and HS, are as follows: 1) marginal areas of discharge of the groundwaters of the 2nd hydrogeological story (H-story), 2) zones of topography-controlled upward cir-culation within the internal basin area (at the 1st and, in places, at the 2nd H-stories; 3) crests of anticlinal folds or uplifted tectonic blocs within the internal basin area where the upper regional aquitard is thinned or partially breached; 4) linear-local zones of deep-rooted cross-formational faults conducting AF from internal deep sources across the upper H-stories. Hydrodynamics in the 3rd and 4th stories is dominated by ascending circulation strongly controlled by cross-formational tectonic structures. Specific circula-tion pattern develops in large Cenozoic carbonate platforms (the Florida-type), side-open to the ocean, where AF across stratified sequences in the coastal parts, driven by both topography-induced head gradients and density gradients, involves mixing with the seawater. The latter can be drawn into a platform at deep levels and rise in the plat-form interior (the Kohout’s scheme). In folded regions, AF and HS are tightly con-trolled by faults, especially those at junctions between large tectonic structures. In young intramontaine basins with dominating geostatic regime, HS is favored at margin-al discharge areas where circulation systems of different origins and regimes may inter-act, such as meteoric waters flows from adjacent uplifted massifs, basinal fluids expelled from the basin’s interiors, and endogenous fluids rising along deep-rooted faults. Spe-cific and very favorable settings for HS are found in regions of young volcanism with carbonate formations in a sedimentary cover


Results 1 to 15 of 18
You probably didn't submit anything to search for