Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That injection head is a swivel head connector through which drilling fluid is injected into the drill pipe [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for cryogenic calcite (Keyword) returned 11 results for the whole karstbase:
KINETIC ENRICHMENT OF STABLE ISOTOPES IN CRYOGENIC CALCITES, 1992, Clark Id, Lauriol B,
The C-13 and O-18 contents of cryogenic calcites formed by expulsion during the freezing of bicarbonate groundwaters are examined. Samples from karst caves within the permafrost region of northern Yukon, Canada, have deltaC-13-values as high as 17.0 parts per thousand, representing the most isotopically enriched freshwater carbonates yet reported. To account for such enrichments, calcium bicarbonate solutions were frozen and sublimated under controlled laboratory conditions. The rapid rate of reaction is shown to effectively preclude isotopic equilibration during bicarbonate dehydration, resulting in a kinetic partitioning of C-13 between CO2 and CaCO3. We find a value of 31.2 1.5 parts per thousand for 1000ln13alpha(KIE)(13alpha(KIE) = 1.032), which is considerably greater than the equilibrium fractionation factor (13epsilon(CaCO3-CO2)) of 10.3 parts per thousand at 0-degrees-C. This kinetic isotope effect (KIE) represents the ratio of the absolute reaction rate constants (13k(d)/12k(d)) for the two isotopic species during the dehydration of dissolved bicarbonate. Similar results for deltaO-18-values confirm that the reaction proceeds without isotope exchange. The KIE of O-18 is determined to be 1.006 for this reaction at 0-degrees-C. These data are compared with the KIE which occurs during the reverse reaction: CO2 hydroxylation by reaction with OH- in hyperalkaline waters

Aufeis of the Firth River basin, Northern Yukon Canada: Insights into permafrost hydrogeology and Karst, 1997, Clark Id, Lauriol B,
The 31-km(2) aufeis ice sheet of the upper Firth River holds a wealth of information on groundwater hydrology in periglacial environments. Baseflow recession calculations, corrected for aufeis storage (12% of basin discharge), indicate specific groundwater recharge rates of up to 100 mm yr(-1) (up to 50% of runoff), suggesting a significant proportion of drainage from karst. The upper Firth River aufeis is a composite aufeis, with discrete baseflow contributions from different watersheds. Since the late Pleistocene, annual growth of the aufeis has exerted a strong control on lateral erosion and the local river channel geomorphology. Two groundwater recharge processes are distinguished on the basis of carbonate geochemistry and 8(13)C: (1) Methanogenic groundwaters, with C-13(DIC) up to -3.3 parts per thousand, are recharged through saturated soils underlain by permafrost; conditions which support anaerobic consumption of dissolved organic carbon (DOC) and produce up to 700 mu g-CH4 L-1 (calculated), and (2) Karst groundwaters, with C-13-depleted DIC, recharged through unsaturated soils and circulate through fissured talik in the carbonate bedrock. Most drainage from the region shows varying contributions of these two groundwaters, although a greater contribution from the methanogenic groundwaters occurs in north-facing watersheds. The 8(13)C values far cryogenic calcite precipitates in the ice indicate that the karst groundwaters are the major contribution to aufeis growth. The combined use of 8(13)C(DIC) and geochemistry may be a useful tool to quantify methanogenesis in northern watersheds

Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model, 2004, Zak Karel, Urban Jan, Cilek Vaclav, Hercman Helena,
Cryogenic cave calcite (CCC), formed by segregation of solutes during water freezing, was found in three Central European caves. This calcite type forms accumulations of loose calcite grains on cave floor. The calcite grains are of highly variable crystal morphology, and of sizes ranging from less than 1 mm to over 1 cm. The most typical feature is their accumulation as loose (uncemented) crystals. U-series dating indicates the formation of CCC in the studied caves during several climatic oscillations of the Weichselian (between 61 and 36 ka BP in the Chelsiowa Jama-Jaskinia Jaworznicka cave system in Poland, between 34 and 26 ka BP in the BUML Cave in the Czech Republic, and between 26 and 21 ka BP in the Stratenska Jaskyna cave system, Slovakia). At the time of CCC formation, the studied caves were lying in a periglacial zone.Detailed C and O stable isotope study of CCC samples revealed that slow water freezing under isotope equilibrium was the dominant formational process in the studied Polish and Czech caves. Significantly higher [delta]13C values of CCC in the Stratenska Jaskyna Cave indicate either water freezing in a more opened system with continuous CO2 escape (Rayleigh fractional separation), or participation of another CO2 source. The model of slow water freezing under isotope equilibrium is supported by isolated character of the caves having limited ventilation.In contrast, modern cryogenic cave calcite powders sampled directly on the ice surface of two recently iced caves in Slovakia with high ventilation showed much higher [delta]18O and [delta]13C data, similar to cryogenic calcites obtained in experimental rapid water freezing

Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): origin, unusual internal structure and stable C-O isotope composition, 2008, Richter D. K. , Riechelmann D. F. Ch.
Cryogenic calcites yielded U-series ages in the range from 15.610.20 ka to 14.480.12 ka, which is the youngest age obtained so far for this type of cryogenic cave carbonates in Europe. Most of these particles of the Malachitdom Cave (NE Brilon, Sauerland, North Rhine-Westphalia) are complex spherolites usually smaller than 1 cm. They show ?13C-values between 1 and 5 VPDB and ?18O-values ranging from 7 to 16 VPDB, the ?13C-values increase and the ?18O-values decrease from centre to border. The complex spherolites are interpreted to be formed in slowly freezing pools of residual water on ice, a situation that repeatedly occurred during the change of glacial to interglacial periods in the periglacial areas of Central Europe. After the melting of the caveice, the complex pherolites make up one type of cryogenic calcite particles in the arenitic to ruditic sediment.

Late Pleistocene cryogenic calcite spherolites from the Malachitdom Cave (NE Rhenish Slate Mountains, Germany): origin, unusual internal structure and stable C-O isotope composition, 2008, Richter D. K. , Riechelmann D. F. Ch.

Cryogenic calcites yielded U-series ages in the range from 15.61±0.20 ka to 14.48±0.12 ka, which is the youngest age obtained so far for this type of cryogenic cave carbonates in Europe. Most of these particles of the Malachitdom Cave (NE Brilon, Sauerland, North Rhine-Westphalia) are complex spherolites usually smaller than 1 cm. They show δ13C-values between –1 and –5 ‰ VPDB and δ18O-values ranging from –7 to –16 ‰ VPDB, the δ13C-values increase and the δ18O-values decrease from centre to border. The complex spherolites are interpreted to be formed in slowly freezing pools of residual water on ice, a situation that repeatedly occurred during the change of glacial to interglacial periods in the periglacial areas of Central Europe. After the melting of the caveice, the complex spherolites make up one type of cryogenic calcite particles in the arenitic to ruditic sediment.


Kryogene Calcitpartikel aus der Heilenbecker Hhle in Ennepetal (NE Bergisches Land/Nordrhein-Westfalen), 2008, Richter D. K. , Neuser R. D. , Voigt S.
Calcarenites to -rudites are present between fallen blocks in the Runde Halle of the Heilenbecker Cave in Ennepetal (NE Bergisches Land, Germany) and are mainly composed of four particle types: 1. plait sinter, 2. rhombohedral crystal sinter, 3. spherulites, 4. skeletal crystal sinter. These speleogenic particles were studied using scanning electron microscopy, cathodoluminescence microscopy and mass spectrometry (C/Oisotopes) in order to gain insights into their mode of formation. The very low 18O (6 to 16 VPDB) and 13C values (3 to 7VPDB) strongly suggest that these calcite particles formed in pools on ice during the transition from a glacial to a warm climate period. Growth of these particles apparently occurred during very slow freezing of water. After the ice had melted the cryogenic particles settled between and on the blocks of the cave.

Formation of seasonal ice bodies and associated cryogenic carbonates in Caverne de lOurs, Que bec, Canada: Kinetic isotope effects and pseudo-biogenic crystal structures, 2009, Lacelle D. , Lauriol B. , And Clark I. D.
This study examines the kinetics of formation of seasonal cave ice formations (stalagmites, stalactites, hoar, curtain, and floor ice) and the associated cryogenic calcite powders in Caverne de lOurs (QC, Canada), a shallow, thermally-responsive cave. The seasonal ice formations, which either formed by the: (1) freezing of dripping water (ice stalagmite and stalactite); (2) freezing of stagnant or slow moving water (floor ice and curtain ice) and; (3) condensation of water vapor (hoar ice), all (except floor ice) showed kinetic isotope effects associated with the rapid freezing of calcium bicarbonate water. This was made evident in the dD, d18 O and d (deuterium excess) compositions of the formed ice where they plot along a kinetic freezing line. The cryogenic calcite powders, which are found on the surface of the seasonal ice formations, also show kinetic isotope effects. Their d13 C and d18 O values are among the highest measured in cold-climate carbonates and are caused by the rapid rate of freezing, which results in strong C-O disequilibrium between the water, dissolved C species in the water, and precipitating calcite. Although the cryogenic calcite precipitated as powders, diverse crystal habits were observed under scanning electron microscope, which included rhombs, aggregated rhombs, spheres, needles, and aggregated structures. The rhomb crystal habits were observed in samples stored and observed at room temperature, whereas the sphere and needle structures were observed in the samples kept and observed under cryogenic conditions. Considering that the formation of cryogenic calcite is purely abiotic (freezing of calcium bicarbonate water), the presence of spherical structures, commonly associated with biotic processes, might represent vaterite, a polymorph of calcite stable only at low temperatures. It is therefore suggested that care should be taken before suggesting biological origin to calcite precipitates based solely on crystal habits because they might represent pseudo-biogenic structures formed through abiotic processes.

Kryogene Calcite unterschiedlicher Kristallform und Kathodolumineszenz aus der Glaseishhle am Schneiber (Steinernes Meer/Nationalpark Berchtesgaden, Deutschland, 2009, Richter D. K. , Voigt S. , Neuser R. D.
For the first time calcite that apparently precipitated from slowly freezing water is described from a cave in the Eastern Alps. These cryogenic carbonates show anomalously low ?18O-values (-18.5 to -23.0 VPDB) but high ?13C-values (+4.7 to +6.6 VPDB) when compared to normal speleothems from the Alps. Two types of rhombohedral crystals (normal and steep rhombohedra) of different C/O-isotopic composition occur together on the cave floor suggesting a later mixing of calcite particles which initially formed in different environments. This is in accordance with the highly variable cathodoluminescence patterns of these crystals. It is suggested that these cryogenic calcite particles formed in separate pools on the cave ice surface during the transition from the last glacial to the current interglacial. After melting of the ice the different calcite particles accumulated on the cave floor.

Zerbrochene Hhlensinter und Kryocalcite als Indikatoren fr eiszeitlichen Permafrost im Herbstlabyrinth-Adventhhle-System bei Breitscheid-Erdbach (N-Hessen) , 2011, Richter D. K. , Mischel S. , Dorsten I. , Mangini A. , Neuser R. D. , Immenhauser A.
Speleothem fragments and calcite crystal sands are indicative of the spectacular fragmentation pattern of the central stalagmite of the Weihnachtsbaum-Halle in the Herbstlabyrinth-Advent cave system near Breitscheid-Erdbach (northern Hesse). The fractures are oriented perpendicular and parallel to subparallel to the speleothem layering and were caused by freeze-thaw weathering. According to the trace-element and stable isotope composition the calcite crystal sands formed under cold conditions. The youngest generation of cryogenic calcites, dated to 2324 ka by U/Th, is indicative of slow freezing of cave waters after the Weichselian Interstadial no. 3 and shows ?13C values from 1.0 to 3.1 and ?18O values from 13.7 to 17.3 . Based on the dominant occurrence of the rhombohedral crystal type in the crystal sands we introduce a genetic model of a deepening permafrost soil. The multiphase speleothem fracturing and occurrence of cryogenic calcite suggest an extended period of formation during the Weichselian of the studied stalagmite (the age of the top of stalagmite below the oldest cryogenic calcites is 75.8 ka). The repeated combination of freeze-thawweathering of speleothems and the for - mation of cryogenic calcites represents a new indicator for the decoding of the interstadial/stadial transitions during the Weichselian ice age in the periglacial area of central Europe.

Glacial processes in caves, 2012, Luetscher, M.

Glacial processes are known to impinge on many karst systems, of which the active formation of cave ice represents a salient feature. In temperate environments, the preservation of massive, perennial cave ice deposits, comprising sometimes tens of thousands cubic meters, represents probably the most severe test for models of sporadic permafrost distribution. Additionally, stratified cave ice deposits foster detailed glaciochemical investigations to decipher this environmental archive. Recent investigations have shown that the accessible time window for paleoclimate reconstructions sometimes covers several thousands of years, but understanding the relation between external climate change and the cave ice mass balance still remains challenging. Process-oriented studies suggest that interannual cave ice mass balances respond primarily to modifications in the winter thermal and precipitation regimes. By contrast, cave ice ablation is largely driven by heat exchange with the surrounding rock, which is a function of the external mean annual air temperature. Many mid-latitude, low-altitude ice caves are thus likely to disappear under a warming climate scenario. Yet, traces of former glacial processes can be observed in several temperate cave environments. Cryoclasts, solifluction lobes, sorted sediment patterns, cryogenic calcite, and broken speleothems provide clues for the reconstruction of paleo-permafrost. Because they can be accurately dated with U-series methods, cryogenic cave calcites offer a promising field of investigation for past glacial processes 


Glacial Processes in Caves, 2013, Luetscher, M.

Glacial processes are known to impinge on many karst systems, of which the active formation of cave ice represents a salient feature. In temperate environments, the preservation of massive, perennial cave ice deposits, comprising sometimes tens of thousands cubic meters, represents probably the most severe test for models of sporadic permafrost distribution. Additionally, stratified cave ice deposits foster detailed glaciochemical investigations to decipher this environmental archive. Recent investigations have shown that the accessible time window for paleoclimate reconstructions sometimes covers several thousands of years, but understanding the relation between external climate change and the cave ice mass balance still remains challenging. Process-oriented studies suggest that interannual cave ice mass balances respond primarily to modifications in the winter thermal and precipitation regimes. By contrast, cave ice ablation is largely driven by heat exchange with the surrounding rock, which is a function of the external mean annual air temperature. Many mid-latitude, low-altitude ice caves are thus likely to disappear under a warming climate scenario. Yet, traces of former glacial processes can be observed in several temperate cave environments. Cryoclasts, solifluction lobes, sorted sediment patterns, cryogenic calcite, and broken speleothems provide clues for the reconstruction of paleo-permafrost. Because they can be accurately dated with U-series methods, cryogenic cave calcites offer a promising field of investigation for past glacial processes in caves.


Results 1 to 11 of 11
You probably didn't submit anything to search for