Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hydrogeologic unit is 1. any soil or rock unit or zone which by virtue of its hydraulic properties has a distinct influence on the storage or movement of ground water [22]. 2. means a soil or rock unit or zone which by virtue of its porosity or permeability, or lack thereof, has a distinct influence on the storage or movement of ground water [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for crystals (Keyword) returned 111 results for the whole karstbase:
Showing 1 to 15 of 111
One of the Gypsum Crystals from the Cave at South Wash, Wayne Co., Utah, 0000, Moses Alfred J. ,

Origin of fabrics in speleothems composed of columnar calcite crystals, 1978, Kendall A. C. , Broughton P. L. ,

Structure, Sediments and Speleogenesis at Cliefden Caves, New South Wales, 1978, Osborne, R. Armstrong L.

The Cliefden Caves have developed in the Late Ordovician Cliefden Caves Limestone mainly by solution in the phreatic zone. Speleogenesis has been inhibited in steeply dipping thinly bedded limestone and shows a high degree of structural control. Collapse has been significant in late stage development of the caves. Much sediment has been deposited in the four caves studied in detail - Main Cliefden, Murder, Boonderoo and Transmission. Formed in the phreatic zone, layered clay fill is the earliest sediment deposited and occurs in all but Transmission Cave. The phosphate mineral heterosite is found in these sediments. Subaqueous precipitation deposits deposited in the phreas or vadose pools are distinguished from speleothems by their texture. Aragonite is inferred to have been deposited in these sediments and to have since inverted to calcite. Friable loam and porous cavity fill are the most common vadose deposits in the caves. Vadose cementation has converted friable loam to porous cavity fill. Speleothem deposits are prolific in Main Cliefden, Murder and Boonderoo Caves. Helictites are related to porous wall surfaces, spar crystals result from flooding of caves in the vadose zone and blue stalactites are composed of aragonite. Cliefden Caves belong to that class proposed by Frank (1972) in which deposition has been more important than downcutting late in their developmental history.

Environmental Implications of Competitive Growth Fabrics in Stalactitic Carbonate., 1983, Broughton Paul L.
Competitive growth fabrics in stalactitic carbonate are not as widespread as commonly supposed. Most radial columnar crystals are attributed to the coalescence of a precursor crystallite mosaic comprised of syntaxial overgrowths. This secondary fabric is the consequence of carbonate precipitation from a thin water film. Competitive growth, however, is much rarer and arises from two contrasting environments: an influx of detritus interrupting carbonate precipitation, and cave flooding. Thick layers of impurities favour deposition of randomly oriented seed crystals on the growth surface. These result in competitive growth centres when the renewal of carbonate precipitation fails to have crystallographic allegience to the substrate. Competitive growth centres resulting in regularly spaced stellate arrays are favoured habits of fibrous aragonite. Competitive growth in calcite is more likely with conditions of cave flooding, when normal growth of syntaxial overgrowths is suppressed. This results in competitive growth between large terminations with planar faces.

Secondary Origin of the Radial Fabric in Stalactitic Carbonate., 1983, Broughton Paul L.
The growth surfaces of most stalactites are interpreted as numerous syntaxial overgrowth crystallites. These coalesce immediately behind the growth surface, often trapping portions of the water film as fluid-filled cavities. The fluid inclusions represent former inter-crystallite spaces and characterize the widely misinterpreted "growth ring". Complete crystallite coalescence generates inclusions-free calcite, whereas inhibition of lateral coalescence of the overgrowth crystallites generates layers of acicular calcite. It is generally only during periods of cave flooding that the crystallites merge and overgrow each other and precipitation eventually occurs upon large, planar crystal faces. Stalactitic carbonate growth is secondary, from a multi-crystalline precursor that is, in a sense, a largo skeletal crystal. The precursor crystallites are in lattice continuity with the substrate and with adjacent crystallites. Crystal boundaries arise from lateral lattice mismatch on the curved growth surface. It is not competitive growth as the secondary columnar crystals do not interfere with each other.

Les aiguilles de gypse du Verneau (Doubs), 1986, Couturaud, A.
THE GYPSUM NEEDLES OF THE VERNEAU SYSTEM (DOUBS) - These crystals are both exceptionally long (up to 225mm) and very well preserved. They were discovered on the floor of an old choked passage close to a large gallery and a collector. They appear to have grown during a flooded period where the Triassic or paleokarstic gypsum was re-dissolved.

Sr isotope study of vein and cave calcites from southern Israel, 1990, Avigour A, Magaritz M, Issar A, Dodson Mh,
The strontium isotope compositions of secondary calcites from the Negev, southern Israel, were compared to those of the marine carbonate host rocks, which range in age from Triassic to Eocene, in order to understand fluid source and migration through fracture systems in dominantly carbonate strata. The Sr isotopes of these calcite clusters are divided into two groups: (1) calcites with 87Sr/86Sr values greater than those of the host carbonates; and (2) calcites with 87Sr/86Sr values close to the values of the host carbonate. 1. (1) These secondary calcites were found on the main tectonic lines of the Negev (faults and fold axes) and are enriched in 87Sr (87Sr/86Sr = 0.707709-0.709151) relative to the marine carbonate country rocks (87Sr/86Sr = 0.707251-0.70755, with one exception). These calcites are associated or crossed by thin veins filled by Fe- and Mn-oxides.2. (2) Secondary calcites with 87Sr/86Sr values close to those of the marine carbonate country rocks (0.7073-0.7077) are found in karstic caves and veins, and are located in sites which are not on the major faults and fold axes. These calcites are not crossed by Fe- and Mn-oxides.The isotopic results indicate that the solutions from which the secondary minerals of the first group precipitated were not in isotopic equilibrium with the marine host rocks. The possible source of the precipitating solutions can be either surface rain descending through the fault system or ascending groundwaters from the deep Nubian aquifer (Paleozoic to Early Cretaceous in age). In both cases there would be a limited interaction with the host sandstone rock which usually is depleted in Sr. The similarity of the 87Sr/86Sr values to those of the host rocks in the second group suggests that the main source of Sr in these calcite crystals was from the dissolution of the marine carbonate country rocks by rain- and flood waters

Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

Observations cristallographiques et gntiques sur les mgascalnodres de calcite de la grotte de Valea Firii (Mts. de Bilacar, Roumanie), 1992, Ghergari L. , Marza I. , Bodolea A. , Sehiau S.
CALCITE MEGASCALENOHEDRONS IN THE VALEA FIRII CAVE (BIHOR MOUNTAINS, ROMANIA) - Calcite megascalenohedrons in the Valea Firii cave (Bihor Mountains) (3-70 cm long, usually 25-30 cm, the larger weighting 50-55 kg) are of exogenous origin, deposited on fracture walls by Ca(HCO3)2 rich solutions. There are primary (autochtonous) crystals, crystallographic forms developed in the area [2201] and crystals with corroded faces (allochtonous, detached and buried in the clay on the cave floor), with characteristic features in the main [1102] and secondary [1104], [1108] areas.

Synthetic strontianite-aragonite solid-solution minerals were dissolved in CO2-saturated nonstoichiometric solutions of Sr(HCO3)2 and Ca(HCO3)2 at 25-degrees-C. The results show that none of the dissolution reactions reach thermodynamic equilibrium. Congruent dissolution in Ca(HCO3)2 solutions either attains or closely approaches stoichiometric saturation with respect to the dissolving solid. In Sr(HCO3)2 solutions the reactions usually become incongruent, precipitating a Sr-rich phase before reaching stoichiometric saturation. Dissolution of mechanical mixtures of solids approaches stoichiometric saturation with respect to the least stable solid in the mixture. Surface uptake from subsaturated bulk solutions was observed in the initial minutes of dissolution. This surficial phase is 0-10 atomic layers thick in Sr(HCO3)2 solutions and 0-4 layers thick in Ca(HCO3)2 solutions, and subsequently dissolves and/or recrystallizes, usually within 6 min of reaction. The initial transient surface precipitation (recrystallization) process is followed by congruent dissolution of the original solid which proceeds to stoichiometric saturation, or until the precipitation of a more stable Sr-rich solid. The compositions of secondary precipitates do not correspond to thermodynamic equilibrium or stoichiometric saturation states. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of solid solutions on surfaces of aragonite and strontianite single crystals immersed in Sr(HCO3)2 and Ca(HCO3)2 solutions, respectively. In Sr(HCO3)2 solutions, the XPS signal from the outer approximately 60 angstrom on aragonite indicates a composition of 16 mol% SrCO3 after only 2 min of contact, and 14-18 mol% SrCO3 after 3 weeks of contact. The strontianite surface averages approximately 22 mol% CaCO3 after 2 min of contact with Ca(HCO3)2 solution, and is 34-39 mol% CaCO3 after 3 weeks of contact. XPS analysis suggests the surface composition is zoned with somewhat greater enrichment in the outer approximately 25 angstrom (as much as 26 mol% SrCO3 on aragonite and 44 mol% CaCO3 on strontianite). The results indicate rapid formation of a solid-solution surface phase from subsaturated aqueous solutions. The surface phase continually adjusts in composition in response to changes in composition of the bulk fluid as net dissolution proceeds. Dissolution rates of the endmembers are greatly reduced in nonstoichiometric solutions relative to dissolution rates observed in stoichiometric solutions. All solids dissolve more slowly in solutions spiked with the least soluble component ((Sr(HCO3)2) than in solutions spiked with the more soluble component (Ca(HCO3)2), an effect that becomes increasingly significant as stoichiometric saturation is approached. It is proposed that the formation of a nonstoichiometric surface reactive zone significantly decreases dissolution rates

The Late Ordovician-Early Silurian Mallowa Salt of the Carribuddy Group, Canning Basin, north-west Australia, is the largest halite deposit known in Australia, attaining thicknesses of 800 m or more within an area of approximately 200 000 km2. Study of 675 m of drill core from BHP-Utah Minerals' Brooke No. 1 well in the Willara Sub-basin indicates that the Mallowa Salt accumulated within a saltern (dominantly subaqueous evaporite water body) that was subject to recurrent freshening, desiccation and exposure. Textures and bromine signatures imply a shallow water to ephemeral hypersaline environment typified by increasing salinity and shallowing into evaporitic mudflat conditions toward the top of halite-mudstone cycles (Type 2) and the less common dolomite/anhydrite-halite-mudstone cycles (Type 1). The borate mineral priceite occurs in the capping mudstones of some cycles, reinforcing the idea of an increasing continental influence toward the top of mudstone-capped halite cycles. The rock salt in both Type 1 and Type 2 cycles typically comprises a mosaic of large, randomly orientated, interlocking halite crystals that formed during early diagenesis. It only partially preserves a primary sedimentary fabric of vertically elongate crystals, some with remnant aligned chevrons. Intraformational hiati, halite karst tubes and solution pits attest to episodic dissolution. Stacked Type 2 cycles dominate; occasional major recharges of less saline, perhaps marine, waters in the same area produced Type 1 cycles. The envisaged saltern conditions were comparable in many ways to those prevailing during the deposition of halite cycles of the Permian Salado Formation in New Mexico and the Permian San Andres Formation of the Palo Duro Basin area in Texas. However, in the Canning Basin the cycles are characterized by a much lower proportion of anhydrite, implying perhaps a greater degree of continental restriction to the basin. The moderately high level of bromine in the Mallowa Salt (156.5 43.5 ppm Br for primary halite, 146.1 54.7 ppm Br for secondary halite) accords with evolved continental brines, although highly evaporative minerals such as polyhalite and magnesite are absent. The bromine levels suggest little or no dissolution/reprecipitation of primary halite and yet, paradoxically, there is little preservation of the primary depositional fabric. The preservation of early halite cements and replacement textures supports the idea of an early shutdown of brine flow paths, probably at burial depths of no more than a few metres, and the resultant preservation of primary bromine values in the secondary halite

Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2 5 million years ago. The third period of void-filling deposition. after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time

Within the Franco-Belgian segment of the Hercynian orogen, two thick Dinantian anhydritic formations are known, respectively in the Saint-Ghislain (765 m) and Epinoy 1 (904 m) wells. Nevertheless, occurrences of widespread extended breccias and of numerous pseudomorphs of gypsum/anhydrite in stratigraphically equivalent carbonate deposits (boreholes and outcrops), suggest a larger extent of the evaporitic conditions (fig. 1, 2). The present distribution of evaporites is controlled by palaeogeographical differentiation and post-depositional parameters such as tectonics and dissolution. These latter have dissected the deposits formerly present in all the structural units. By using depositional, diagenetic and deformational characters of these formations, the article provides a model for the reconstruction of a dislocated evaporitic basin. This segment of the Hercynian chain is schematically composed of two main units (fig. 1, 3) : (1) the autochthonous or parautochthonous deposits of the Namur synclinorium, (2) the Dinant nappe thrusted northward over the synclinorium of Namur. The major thrust surface is underlined by a complex fault bundle (faille du Midi) seismically recognized over more than 100 km. A complex system of thrust slices occurs at the Hercynian front. Except for local Cretaceous deposits, most of the studied area has been submitted to a long period of denudation since the Permian. Sedimentary, faunistic and geochemical data argue for a marine origin of the brines which have generated the evaporites interbedded with marine limestones. Sedimentary structures. - The thick evaporitic formations are composed of calcium-sulfates without any clear evidence of the former presence of more soluble salts (with the exception of a possible carbonate-sulfate breccia in the upper part of the Saint-Ghislain formation). As in all the deeply buried evaporitic formations, the anhydrite is the main sulfate component which displays all the usual facies : pseudomorphs after gypsum (fig. 4A, B), nodular and mosaic (fig. 4C), laminated. The gypsum was probably an important component during the depositional phase despite the predominant nodular pattern of the anhydrite. Early diagenetic nodular anhydrite may have grown during temporary emersion of the carbonates (sabkha environments), but this mechanism cannot explain the formation of the whole anhydrite. So, most of the anhydrite structures result from burial-controlled gypsum --> anhydrite conversion and from mechanical deformations. Moreover, a complex set of diagenetic processes leads to various authigenic minerals (celestite, fluorite, albite, native sulfur, quartz and fibrous silica) and to multistaged carbonate <> sulfate replacements (calcite and dolomite after sulfate, replacive anhydrite as idiomorphic poeciloblasts, veinlets, domino-like or stairstep monocrystals...). These mineral transformations observed ill boreholes and in outcrops have diversely been controlled during the complex evolution of the series as : depositional and diagenetic pore-fluid composition, pressure and temperature changes with burial, bacterial and thermochemical sulfate reduction, deep circulations favored by mechanical brecciation, mechanical stresses, role of groundwater during exhumation of the series. Deformational structures. - A great variety of deformational structures as rotational elongation, stretching, lamination, isoclinal microfolding, augen-like and mylonitic structures are generated by compressive tectonic stresses (fig. 4D to J). The similarities between tectonic-generated structures and sedimentary (lamination) or diagenetic (pseudo-nodules) features could lead lo misinterpretations. The calcareous interbeds have undergone brittle deformation the style and the importance of which depend of their relative thickness. Stretching, boudins, microfolds and augen structures F, H. I) affect the thin layers while thicker beds may be broken as large fractured blocks dragged within flown anhydrite leading to a mylonitic-like structure (fig, 4G). In such an inhomogeneous formation made of interlayered ductile (anhydrite) and brittle (carbonate) beds, the style and the intensity of the deformation vary with respect to the relative thickness of each of these components. Such deformational features of anhydrite may have an ubiquitous significance and can result either from compressive constraints or geostatic movements (halokinesis). Nevertheless, some data evidence a relation with regional tangential stresses: (1) increase of the deformation toward the bottom of the Saint-Ghislain Formation which is marked by a deep karst suggesting the presence of a mechanical discontinuity used as a drain for dissolving solutions (fig. 3, 4); (2) structural setting (reversed series, internal slidings) of the Epinoy 1 formation under the Midi thrust. However, tectonic stresses also induce flowing deformations which have contributed to cause their present discontinuity. It can be assumed that the evaporites played an active role for the buckling of the regional structure as detachment or gliding layers and more specifically for the genesis of duplex structures. Breccia genesis. - Great breccia horizons are widely distributed in outcrops as well as in the subsurface throughout the greater part of the Dinant and Namur units (fig. 2). The wide distribution of pseudomorphosed sulfates in outcrops and the stratigraphical correlation between breccia and Saint-Ghislain evaporitic masses (fig. 2) suggest that some breccia (although not all) have been originated from collapse after evaporites solution. Although some breccia may result from synsedimentary dissolution, studied occurrences show that most of dissolution processes started after the Hercynian deformation and, in some cases, were active until recently : elements made of lithified and fractured limestones (Llandelies quarries) (fig. 5A), preservation of pseudomorphs of late replacive anhydrite (Yves-Gomezee) (fig. 5B, C), deep karst associated with breccia (Douvrain, Saint Ghislain, Ghlin boreholes) (fig. 3, 4, 5D)). Locally, the final brecciation may have been favored by a mechanical fragmentation which controlled water circulations (fig. 5E). As postulated by De Magnee et al. [19861, the dissolution started mostly after the Permian denudation and continued until now in relation with deep circulations and surface weathering (fig. 6). So, the above-mentioned occurrences of the breccia are logically explained by collapse after dissolution of calcium-sulfates interbeds of significant thickness (the presence of salt is not yet demonstrated), but other Visean breccia may have a different origin (fig. 5F). So, these data prove the extension of thick evaporitic beds in all the structural units including the Dinant nappe, before dissolution and deformation. Implications. - Distribution of Visean evaporites in northern France and Belgium is inherited from a complicated paleogeographic, tectonic and post-tectonic history which has strongly modified their former facies, thicknesses and limits (fig. IA, 6). Diversified environments of deposition controlled by both a palaeogeographical differentiation and water level fluctuations led to the deposition of subaqueous (gypsum) or interstitial (gypsum, anhydrite) crystallization. Nevertheless, most of the anhydrite structures can be interpreted as resulting from burial conversion of gypsum to anhydrite rather than a generalized early diagenesis in sabkha-like conditions. Deformation of anhydrite caused by Hercynian tangential stresses and subsequent flow mechanisms, have completed the destruction of depositional and diagenetic features. The tectonic deformations allow us to consider the role of the evaporites in the Hercynian deformations. The evaporites supplied detachment and gliding planes as suggested for the base of the Saint-Ghislain Formation and demonstrated by the structural setting of Epinoy 1 evaporites in reverse position and in a multi-system of thrust-slices below the Midi overthrust (fig. 7). So, although the area in which evaporation and precipitation took place cannot be exactly delineated in geographic extent, all the data evidence that the isolated thick anhydritic deposits represent relics of more widespread evaporites extending more or less throughout the different structural units of this Hercynian segment (fig. 1B). Their present discontinuity results from the combination of a depositional differentiation, mechanical deformations and/or dissolution

At Tylicz, near Krynica Spa (Polish Carpathians), spelean deposits fill fissures and caverns in Eocene flysch rocks. They occur as: (1) clastic cave sediments transformed into hard crusts due to cementation by finely crystalline low-Mg calcite, (2) drusy calcite that covers crust surfaces and fills voids in the crust and (3) colloform calcite. Two varieties of drusy calcite are distinguished: acicular and columnar. The acicular calcite is built up of crystallites forming spherulitic fans or cones. In places it is syntaxially covered with colloform calcite. The drusy calcite is low-Mg ferroan calcite with non-ferroan subzones, whereas the colloform calcite is a low-Mg non-ferroan variety. The columnar calcite crystals form fan-like bundles. Cross-sections cut perpendicular to the c-axes of columnar crystals are equilateral triangular in shape, although some have slightly curved edges. The columnar crystals have steep rhombic terminations and most have curved triangular faces, i.e. gothic-arch calcite. Saddle crystals have also been observed. The columnar crystals are composed of radially orientated crystallites whose long dimension is parallel to the c-axis. The curved crystal faces of such polycrystals are interpreted as a result of differential growth rates of the crystallites. The spelean calcites precipitated from CO2-saturated water. The high rate of CaCO3 Precipitation is thought to be responsible for the formation of radial structures. Finely crystalline calcite formed within pore spaces of clastic sediments close to the water-air interface, drusy calcite crystallized beneath the water-air interface, and colloform calcite precipitated from thin films of water

Recent flowstone growth rates: field measurements and comparison to theoretical results, 1995, Baker A. , Smart Pl. ,
The model of calcite precipitation kinetics of D. Buhmann and W. Dreybrodt, based on the rate laws of L.N. Plummer et al., is used to predict cave flowstone growth rates. These theoretically modelled growth rates are compared to actual growth rates of recent samples found in cave and mine sites in southwest England. A good agreement is found between modelled and actual growth rates within the 95% confidence level of the determinations, although in general modelled growth rates overestimate actual growth rate by between 2.4 and 4.7 times. Several reasons for this overestimation are discussed, including uncertainties arising from the experimental data of L.N. Plummer et al., seasonal shut-off of water flow onto the flowstones and significant variations in the growth rate determining parameters during the period of flowstone growth. For one flowstone an underestimation of growth rate is observed and is explained by the presence of rimstone pools which pond water on the sample surface

Results 1 to 15 of 111
You probably didn't submit anything to search for