Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That curtain is 1. sinuous, thin sheet (or sheets) of dripstone formed on the roof or walls of a cave or behind a waterfall [20]. 2. a wavy or folded sheet of flowstone hanging from the roof or projecting from the wall of a cave; often translucent and resonant [10]. see also bacon; blanket; drapery. related to helictite and speleothem. synonyms: (french.) draperie stalagmitique; (german.) sinterfahne; (greek.) parapetasma stalaktitikon; (italian.) cortina stalattitica; (russian.) zanavesj; (spanish.) bandera, cortina; (turkish.) perde; (yugoslavian.) sigasta zavjesa, sigasta zavesa.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for data sets (Keyword) returned 12 results for the whole karstbase:
Linear systems analysis in a karst aquifer, 1999, Long A. J. , Derickson R. G. ,
A linear systems analysis applied to ground-water flow is presented as an alternative modeling technique to traditional discretized ground-water models (i.e. finite-difference and finite-element), which require elaborate parameters and boundary conditions. Linear systems analysis has been used extensively for surface-water modeling and to 3 lesser extent for groundwater applications. We present a method for the analysis of an aquifer's response in hydraulic head to recharge that comprises two major components. The first component is to predict the drop in hydraulic head over time if recharge is eliminated. By fitting logarithmic curves to selected short-term hydraulic head recession periods, a long-term recession or 'base head' can be established. The estimation of base head is necessary for the second component of the method, which is the derivation of an impulse response function or transfer function. The transfer function H-as derived by deconvolution of two time series data sets - estimated recharge and the measured response in hydraulic head. An aquifer's response to recharge can be characterized and modeled by using the transfer function. which also establishes the time to peak response. the response time distribution, and the total memory length of the system. The method requires fitting smooth curves to the oscillatory transfer function derived by deconvolution in the Fourier transform domain. The smooth curve is considered to be the physically valid transfer function. In this analysis, curve fitting was more effective than other smoothing techniques commonly used. We applied the method to the karstic Madison aquifer and found that thr time to peak response is less than one month, the system's total memory is about six years, and a logarithmic curve best fits the system response. This method has potential to be useful as 3 predictive tool in aquifer management. (C) 1999 Elsevier Science B.V. All rights reserved

Application of morphometric relationships to active flow networks within the Mammouth Cave Watershed, MSc Thesis., 2001, Glennon, A.

Numerous quantitative relationships have been formulated to describe the nature of surface-drainage networks. These parameters have been used in various studies of geomorphology and surface-water hydrology, such as flood characteristics, sediment yield, and evolution of basin morphology. Little progress has been made in applying these quantitative descriptors to karst flow systems due to the lack of sufficiently complete data and inadequate technology for processing the large, complex data sets. However, as a result of four decades of investigation, an abundance of data now exists for the Mammoth Cave Watershed providing the opportunity for broader quantitative research in the organization of a large, highly-developed, karst-drainage network. Developing Geographic Information System (GIS) technology has provided tools to 1) book-keep the karst system's large, complex spatial data sets, 2) analyze and quantitatively model karst processes, and 3) visualize spatially and temporally complex data. []Karst aquifers display drainage characteristics that in many ways appear similar to surface networks. The purpose of my research was to explore techniques by which quantitative methods of drainage-network analysis can be applied to the organization and flow patterns in the Turnhole Bend Groundwater Basin of the Mammoth Cave Watershed. []Morphometric analysis of mapped active base-flow, stream-drainage density within the Turnhole Bend Groundwater Basin resulted in values ranging from 0.24 km/km2 to 1.13 km/km2. A nearby, climatologically similar, nonkarst surface drainage system yielded a drainage density value of 1.36 km/km2. Since the mapped cave streams necessarily represent only a fraction of the total of underground streams within the study area, the actual subsurface values are likely to be much higher. A potential upper limit on perennial drainage density for the Turnhole Bend Groundwater Basin was calculated by making the assumption that each sinkhole drains at least one first-order stream. Using Anhert and Williams’ (1998) average of 74 sinkholes per km2 for the Turnhole Bend Groundwater Basin, the minimum flow-length draining one km2 is 6.25-7.22 km (stated as drainage density, 6.25-7.22 km/km2). []Stream ordering of cave streams and their catchments generally follow Hortonian relationships observed for surface-stream networks. Subsurface streams within the Mammoth Cave Watershed generally exhibit a converging, dendritic pattern and possess drainage basins proportionately large for their order. However, even at base-flow conditions, the Turnhole Bend drainage system continues to possess confounding characteristics. These include at least one leakage to an adjacent groundwater basin (Meiman et al., 2001), diverging streams sharing the same surface catchment (Glennon and Groves, 1997), and highly complex, three-dimensional basin boundaries (Meiman et al., 2001). In spite of the incomplete data set available for the Mammoth Cave Watershed, study of initial values suggests an orderly subsurface flow network with numerical results that allow for comparison of the karst-flow network to surface fluvial systems.

The vegetation of the high mountains of Crete - a revision and multivariate analysis, 2002, Bergmeier E,
The vegetation at elevations above 1,400 m in the south Aegean island of Crete (Greece) is studied and revised. By means of phytosociological classification (assisted by TWINSPAN) and ordination (Detrended correspondence analysis, DCA), the plant communities and abiotic (environmental, geographical) factors governing the variance in vegetation are described and discussed. The analyses are based on 492 sample plots from the three major mountain ranges of Crete. All published data available, as well as own unpublished releves are included. Since the plots differ much with respect to species number and plot size, and to combine different subsets and different data properties, various data sets are used for DCA ordination. Data on environmental variables are used supplementarily. Ordination results suggest the following factors to be of major effect on the variance in vegetation: Rock type, soil type, altitude, geographical situation, degree of substrate fixation, and inclination. The representation of local and regional endemics in the vegetation increases with altitude and along the habitat type series: phrygana and woodland - fixed slopes - dolines - screes. A synoptic table of 26 columns (vegetation types and subtypes) is presented. The vegetation consists of the tragacanth formation of fixed slopes (8 columns), swards and scrub of doline grounds (9), scree vegetation (4), and rupicolous chasmophytic vegetation (2). Phrygana (2) and woodland vegetation (1) are marginal. A hierarchical conspectus of the syntaxa is provided which includes the following nomenclaturally relevant new or validated names of various ranks (in alphabetic order): Alysso sphaciotici-Valantion apricae, Arenario fragillimae-Silenetum antri-jovis, Arenarion creticae, Astragalion cretici, Berberido creticae-Astragaletum cretici, Cicero incisi-Silenetum variegatae, Colchico cretensis-Cirsion morinifolii, Fumano paphlagonicae-Helianthemetum hymettii, Gypsophilo nanae-Arenarietum creticae, Hyperico kelleri-Anchusetum cespitosae, Lomelosio sphacioticae-Centranthetum sieberi, Paronychio macrosepalae-Juniperetum oxycedri, Saturejo spinosae-Scutella-rietalia hirtae, Sideritido syriacae-Verbascetum spinosi, Verbascion spinosi

Regional Quaternary submarine geomorphology in the Florida Keys, 2003, Lidz Barbara H. , Reich Christopher D. , Shinn Eugene A. ,
High-quality seismic reflection profiles fill a major gap in geophysical data along the south Florida shelf, allowing updated interpretations of the history of the Quaternary coral reef system. Incorporation of the new and existing data sets provides the basis for detailed color maps of the Pleistocene surface and thickness of overlying Holocene accretions. The maps cover the Florida Keys to a margin-wide upper-slope terrace (30 to 40 m deep) and extend from The Elbow Reef (north Key Largo) to Rebecca Shoal (Gulf of Mexico). The data indicate that Pleistocene bedrock is several meters deeper to the southwest than to the north east, yet in general, Holocene sediments are [~]3 to 4 m thick shelf-wide. The Pleistocene map demonstrates the significance of a westward-dipping bedrock surface to Holocene flooding history and coral reef evolution. Seismic facies show evidence for two possible Holocene stillstands. Aerial photographs provide information on the seabed surface, much of which is below seismic resolution. The photographs define a prominent, regional nearshore rock ledge that extends [~]2.5 km seaward from the keys' shoreline. They show that bands of rock ridges exist along the outer shelf and on the upper-slope terrace. The photographs also reveal four tracts of outlier reefs on the terrace, one more than had been documented seismically. Seismic and photographic data indicate the tracts are >200 km long, nearly four times longer than previously thought. New interpretations provide insights into a youngest possible terrace age (ca. 175 ka?) and the likelihood that precise ages of oxygen isotope substage 5e ooid tidal-bar and coral reef components may differ. The tidal-bar/reef complex forms the Florida Keys

A nonlinear rainfall-runoff model using neural network technique: Example in fractured porous media, 2003, Lallahem S. , Mania J. ,
One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO,. and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance. (C) 2003 Elsevier Science Ltd. All rights reserved

Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, 2004, Mcdermott, F.

Speleothems are now regarded as valuable archives of climatic conditions on the continents, offering a number of advantages relative to other continental climate proxy recorders such as lake sediments and peat cores. They are ideal materials for precise U-series dating, yielding ages in calendar years, thereby circumventing the radiocarbon calibration problems associated with most other continental records. Stable isotope studies in speleothems have shifted away from attempting to provide palaeo-temperature reconstructions to the attainable goal of providing precise estimates for the timing and duration of major O isotope-defined climatic events characterised by high signal to noise ratios (e.g. glacial/interglacial transitions, Dansgaard–Oeschger oscillations, the ‘8200- year’ event). Unlike the marine records, speleothem data sets are not ‘tuned’, and their independent chronology offers opportunities to critically assess leads and lags in the climate system, that in turn can provide important insights into forcing and feedback mechanisms. Improved procedures for the extraction and measurement of stable isotope ratios in fluid inclusions trapped in speleothems are likely to provide, in the near future, a much enhanced basis for the quantitative interpretation of O isotope ratios in speleothem calcite. The latter developments open up once again the tantalising prospect of palaeo-temperature estimates, but more importantly perhaps, provide a direct test for a new generation of general circulation models whose hydrological cycles will incorporate the ‘water isotopes’. The literature is reviewed briefly to provide for the reader a sense of the current state-of-the-art, and to provide some pointers for future research directions

Sinkhole distribution based on pre-development mapping in urbanized Pinellas County, Florida, USA, 2007, Brinkmann R, Wilson K, Elko N, Seale Ld, Florea L, Vacher Hl,
Locating sinkholes in Pinellas County, Florida, is confounded by the presence of a cover of Quaternary sediments that mute the surface appearance of these sinkholes. As a first step in addressing the sinkhole hazard in the county, we analysed aerial photographs from 1926 and 1995 that covered the entire county. We digitized all identifiable sinkholes in each set of photographs in a GIS (Geographical Information System) using a set of criteria established to differentiate between karst depressions and depressions resulting from other geological processes. The 1926 photographs, although of low quality, helped to establish a baseline prior to urbanization. The 1995 photographs provided a post-urbanization distribution of natural sinkholes and man-made depression features (e.g. retention ponds). From these two data sets, we are able to assess natural and anthropogenic changes in the karst landscape of the study area. In particular, we discovered that 87% of the sinkhole features identified in the 1926 photographs are no longer present in the photographs from 1995. Many of the lost depressions have been incorporated into retention ponds

Isotopic Investigations of Cave Drip Waters and Precipitation in Central and Northern Florida, USA, Msc.Thesis, 2007, Pacegraczyk, Kali J

A temperature, drip rate, and stable isotopic study (δ18O and δD) was undertaken in three caves in central and northern Florida. Both surface and cave temperatures were collected, as were precipitation, cave drip water and drip rates. All data were collected on a weekly basis to investigate the isotopic relationships between precipitation and cave drip waters. The objective of this study was to provide a calibration of the oxygen and hydrogen isotopic values in precipitation and cave drip water for future paleoclimate work in the Florida peninsula.Based on the steady annual cave temperature and high relative humidity (95% or above), all three caves are suitable locations for paleoclimate work. A spike in the cave drip rate is seen following precipitation events at both Legend and Jennings Caves. A lag time of 52 days between the date of the storm event and the increase in drip rate was found at Legend Cave.

Legend and Jennings Caves in central Florida show a relationship between the amount of precipitation and the δ18O values. The isotopic values in precipitation were more depleted after a large precipitation event, suggesting the amount effect is influential in this location. At Florida Caverns State Park tourist cave in northern Florida, the association between 18O and precipitation was weak while a relationship between 18O and temperature may be present; here the seasonal effect or latitude effect may be significant.
The monthly mean isotopic values of the drip waters were found to approximate those of the precipitation. The steady isotopic values of the drip water are due to a homogenization of water infiltrating into the epikarst and mixing with water already present in the karst storage. This finding is important for future paleoclimate research in the Florida peninsula. An important assumption in paleoclimate work is that the value of δ18O in calcite at the time of precipitation represents the mean annual δ18O of precipitation at the time of deposition. The ultimate objectives of this research were to assess the isotopic relationship between precipitation and cave drip waters in order to interpret paleoclimate data sets. Although the data were limited to a single year, it appears that a sufficient isotopic signal exists in central-north Florida precipitation and drip water to apply for paleoclimate studies.

Time series analyses are often used for the investigation of karst aquifers, but are only rarely employed in a way of using a large number of spatially distributed time series. Furthermore, only a small number of applications employ other types of hydrological data apart from rainfall, water level and discharge. The presented study of the Malen?ica karst spring aquifer underlines the usefulness of the simultaneous auto and cross-correlation analysis of daily and hourly hydrological data sets, including discharge, water level, temperature, electrical conductivity and rainfall on a regional scale. The results of the autocorrelation analysis show that the storage capacity of the spring is moderate, but this does not indicate that the system, which is characterized by prevailing conduit porosity, is less intensively karstifed. This suggests that well karstied systems of a more complex structure can have higher memory effects than less complex systems. The results of the cross-correlation analysis show that karst springs and watercourses in the investigated area react instantly and simultaneously to rather homogeneous precipitation, yet with different intensity. In such cases a cross-correlation analysis between rainfall or ponors as inputs and springs as outputs does not provide sufficient information on the hydrogeological functioning of the system, whereas the results of a cross-correlation analysis of electrical conductivity data sets provide valuable information on its functioning and can be easily compared to those obtained by tracer tests. On the other hand, the applicability of a temperature time series in such complex karst systems is limited. A comparative analysis of the results of the time series analyses performed in successive hydrological years has proven that the selection of the hydrological year can have strong effects on the results of a time series analysis.

Polyphase speleogenesis in Lick Creek Cave, Little Belt Mountains, Montana, USA, 2010, Carriere K. L. , Machel H. G. , Hopkins J. C.

Lick Creek Cave in northern Montana (USA) is hosted in limestones of the Lower Carboniferous Madison Group near Tiger Butte, an Eocene quartz–syenite porphyry intrusive dome. The cave is located within the zone of contact metamorphism of the dome, which crops out 300 m from the cave entrance. The cave consists of two genetically distinct cave systems separated by a fracture zone: (1) a 80 50 m dome-shaped cavern in breccias of a Carboniferous paleocave, and (2) anastomosing conduits 2–10 m across, parallel to the bedding of the Madison Group and extending 100 m up dip to the present cave entrance. The conduits are further subdivided into a tectonised and a maze zone and are variably decorated in several combinations by phreatic isopachous calcite spar cements, with crystals up to several cm long, and with vadose speleothems, including stalactite–stalagmite pairs, flowstone, corallite (cave popcorn), and moonmilk. Our database is comprised of field survey, thin section, XRD, and SEM observations along with 118 ?18O/?13C analyses and 27 87Sr/86Sr measurements from samples of county rock and speleothems. The limestone matrix samples with the heaviest ?18O/?13C ratios are interpreted as the least recrystallised proxy to Tournaisian seawater. Stable isotope data from other Carboniferous limestones, including paleocave breccias, follow a regional meteoric pathway established elsewhere in the Madison for the Late Carboniferous transition from greenhouse to icehouse conditions. Isopachous calcite spar cements from the conduit zone are interpreted as the result of late-stage, Eocene hydrothermal fluid circulation. Stalactite–stalagmite pairs, flowstone, corallite, and moonmilk carry a signature similar to modern or Quaternary high-alpine meteoric water. Previous workers have determined separate hydrothermal and meteoric ?18O/?13C stable isotope fields for speleothems in caves in Carboniferous limestones from the Black Hills, South Dakota. We re-define the stable isotope ranges for meteoric and magmatic–hydrothermal calcites based on a comparison of stable isotope data from the Little Belt Mountains with those from the Black Hills. We further propose that the hydrothermal calcite end-member ?18O composition is around ?20‰ PDB, represented by the lowest oxygen isotope values from all data sets, with a corresponding ?13C of about ?7‰ PDB. Sr-isotope data from speleothems, Carboniferous limestone wall rocks, and from the igneous intrusion itself support the interpretation of an Eocene hydrothermal speleogenic event. The integration of petrographic and geochemical data shows that Lick Creek Cave is the result of polyphase speleogenesis in three major episodes: (1) Middle to Late Carboniferous, (2) Eocene, and (3) (sub-)Recent to Recent. The Carboniferous and (sub-)Recent to Recent speleogenesis appear epigenic, i.e., driven by surface-derived waters, whereas the Eocene event was hypogenic, i.e., driven by ascending hydrothermal waters. Each of the three major speleogenic events probably consisted of two or more distinct “phases”, but our database does not permit these phases to be resolved with certainty.

Assessing copepod (Crustacea: Copepoda) species richness at different spatial scales in northwestern Romanian caves, 2011, Ioana N. Meleg, Frank Fiers, Oana Moldovan

The aim of the present study was to assess copepod species richness in groundwater habitats from the Pădurea Craiului Mountains, Transylvania (northwestern Romania). Five species richness estimators (one asymptotic, based on species accumulation curves, and four non-parametric) were compared by testing their performances in estimating copepod species richness at three hierarchical spatial scales: cave, hydrographic basin, and karstic massif. Both epigean and hypogean species were taken in account. Two data sets were used in computing copepod species richness: 1. samples collected continuously during one year (dripping water) and seven months (pools) from five caves, and 2. samples collected from pools in twelve additional caves (data gathered from literature). Differences in copepod species richness among caves and hydrographic basins suggest that local environmental features are important in determining local species richness trends.

Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns, 2014, Hergarte Stefan, Winkler Gerfried, Birk Steffen

Principles of optimality provide an interesting alternative to modeling hydrological processes in detail on small scales and have received growing interest in the last years. Inspired by the more than 20 years old concept of minimum energy dissipation in river networks, we present a corresponding theory for subsurface flow in order to obtain a better understanding of preferential flow patterns in the subsurface. The concept describes flow patterns which are optimal in the sense of minimizing the total energy dissipation at a given recharge under the constraint of a given total porosity. Results are illustrated using two examples: two-dimensional flow towards a spring with a radial symmetric distribution of the porosity and dendritic flow patterns. The latter are found to be similar to river networks in their structure and, as a main result, the model predicts a power-law distribution of the spring discharges. In combination with two data sets from the Austrian Alps, this result is used for validating the model. Both data sets reveal power-law-distributed spring discharges with similar scaling exponents. These are, however, slightly larger than the exponent predicted by the model. As a further result, the distributions of the residence times strongly differ between homogeneous porous media and optimized flow patterns, while the mean residence times are similar in both cases.

Results 1 to 12 of 12
You probably didn't submit anything to search for