Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That fungling; fungling karst is (chinese.) isolated limestone hill in alluvial plain, probably similar to mogote [10]. see also fencong; fenglin; mogote; tower karst.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dating methods (Keyword) returned 17 results for the whole karstbase:
Showing 1 to 15 of 17
Le karst en vagues des At Abdi (Haut-Atlas central, Maroc), 1996, Perritaz, L.
The At Abdi plateau (2200-3000 m, 160 km2) is located in the calcareous High Atlas (32? N). It consists of massive Bajocian limestones, which form a large brachysyncline and overlie the clastic Toarcian-Aalenian forming the regional aquiclude and the top of the half captive Middle Liassic aquifer. The rainfall comprises only 500 to 700 mm/yr and the effective evapotranspiration is about 400 mm/yr with a snow coefficient of 60 % and an infiltration rate of 40 %. This means that the recharge of the aquifer mainly occurs during snow melting. The morphology of this nival karst consists in a succession of little parallel and asymmetric dry valleys forming some "waves" ("karst en vagues"). The role of wind and snow in the genesis of these forms is predominant. An old cave system with vertical shafts occluded lower down is proof of ancient more humid climatic conditions. U-Th dating methods on speleothems indicate ages between 3,200 and 220,000 yrs, or more than 400,000 yrs. The horizontal transfer is made by an interstrata network, ancient and dry in the upper part, or recent and phreatic at the base, near the regional aquiclude, attesting three karstification phases.

Dating methods, 1998, Mahaney William C. ,

Co-seismic ruptures and deformations recorded by speleothems in the epicentral zone of the Basel earthquake, 1999, Lemeille Francis, Cushing Marc, Carbon David, Grellet Bertrand, Bitterli Thomas, Flehoc Christine, Innocent Christophe,
The study of growth anomalies of speleothems in a karstic environment can provide potential evidence for palaeoearthquakes. These data are used to study the recurrence times of major earthquakes in areas where evidence for historic seismicity is lacking. A study has been carried out in the epicentral area of the 1356 Basel earthquake (epicentral intensity = VII-VIII, macroseismic magnitude = 6.2). The Battlerloch and Dieboldslochli caves, situated in the area of greatest damage, show growth anomalies of speleothems possibly related to a seismic event (several breaks of speleothems and offsets of the axis of the regrowths). The first U/Th disequilibrum measurements by alpha spectrometry show recent ages (less than several tens of thousands of years and probably historic). 14C dating by AMS of carbonate laminations taken on both sides of the anomalies confirm the evidence of a seismic event around 1300 AD. More accurate darings by U/Th TIMS are carried out in order to compare the information provided by the two different dating methods.ResumeL'etude des anomalies de developpement des speleothemes en milieu endokarstique peut permettre de retrouver la trace de paleoseismes. Ces donnees sont utilisees pour etudier les periodes de retour des seismes majeurs dans les regions ou la sismicite historique n'est pas suffisante. Une etude a ete menee dans la zone epicentrale du seisme de Bale de 1356 (intensite epicentrale = VII-VIII, magnitude macrosismique = 6,2). Dans l'aire de degats majeurs, les grottes du Battierloch et du Dieboldslochli ont montre l'existence d'anomalies de croissance des speleothemes pour lesquelles une origine sismique est possible (nombreuses ruptures de speleothemes et decalage de l'axe de croissance des repousses). Les premieres mesures de desequilibres U/Th par spectrometrie alpha indiquent des ages recents (inferieurs a quelques dizaines de milliers d'annees et probablement historiques). Les datations 14C par AMS de carbonates des lamines preleves de part et d'autre de ces anomalies confirment l'empreinte d'un evenement destructif brutal vers 1300 AD. Des datations plus precises par U/Th TIMS sont en cours de realisation afin de confronter les informations apportees par ces deux chronometres

Paleoclimatology: Reconstructing the Climates of the Quaternary, 1999, Bradley R. S.

Raymond S. Bradley provides his readers with a comprehensive and up-to-date review of all of the important methods used in paleoclimatic reconstruction, dating and paleoclimate modeling. Two comprehensive chapters on dating methods provide the foundation for all paleoclimatic studies and are followed by up-to-date coverage of ice core research, continental geological and biological records, pollen analysis, radiocarbon dating, tree rings and historical records. New methods using alkenones in marine sediments and coral studies are also described. Paleoclimatology, Second Edition, is an essential textbook for advanced undergraduate and postgraduate students studying climatology, paleoclimatology and paleooceanography worldwide, as well as a valuable reference for lecturers and researchers, appealing to archaeologists and scientists interested in environmental change.* Contains two up-to-date chapters on dating methods* Consists of the latest coverage of ice core research, marine sediment and coral studies, continental geological and biological records, pollen analysis, tree rings, and historical records* Describes the newest methods using alkenones in marine sediments and long continental pollen records* Addresses all important methods used in paleoclimatic reconstruction* Includes an extensive chapter on the use of models in paleoclimatology* Extensive and up-to-date bibliography* Illustrated with numerous comprehensive figure captions


Timescales for nitrate contamination of spring waters, northern Florida, USA, 2001, Katz B. G. , Bohlke J. K. , Hornsby H. D. ,
Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium ((3) H), and tritium/helium-3 (H-3/He-3) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997-1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20 2 years from CFC- 12, CFC- 113, H-3, and He-3. with evidence of partial CFC- 11 degradation. The EMM gave a reasonable fit to CFC- 113, CFC- 12. and H-3 data, but did not reproduce the observed He-3 concentrations or H-3/He-3 ratios, nor did a combination PFM-EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had H-3 concentrations not much different front modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC- 113, with evidence of partial CFC- 11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10-20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwance County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio of artificial fertilizer/manure whereas in Lafayette County, spring nitrate trends and nitrogen isotope data were consistent with a more monotonic increase in fertilizer input and relatively low overall ratio of artificial fertilizer/manure. The combined results of this study indicate that the nitrate concentrations of springs in the Suwannee River basin have responded to increased nitrogen loads from various sources in the watersheds over the last few decades, however, the responses have been subdued and delayed because the average residence time of groundwater discharging from springs are in the order of decades. (C) 2001 Published by Elsevier Science B.V

Karst processes from the beginning to the end: How can they be dated?, 2003, Bosk, B

Determining the beginning and the end of the life of a karst system is a substantial problem. In contrast to most of living systems development of a karst system can be „frozen“ and then rejuvenated several times (polycyclic and polygenetic nature). The principal problems may include precise definition of the beginning of karstification (e.g. inception in speleogenesis) and the manner of preservation of the products of karstification. Karst evolution is particularly dependent upon the time available for process evolution and on the geographical and geological conditions of the exposure of the rock. The longer the time, the higher the hydraulic gradient
and the larger the amount of solvent water entering the karst system, the more evolved is the karst. In general, stratigraphic discontinuities, i.e. intervals of nondeposition (disconformities and unconformities), directly influence the intensity and extent of karstification. The higher the order of discontinuity under study, the greater will be the problems of dating processes and events. The order of unconformities influences the stratigraphy of the karst through the amount of time available for subaerial processes to operate. The end of karstification can also be viewed from various perspectives. The final end occurs at the moment when the host
rock together with its karst phenomena is completely eroded/denuded. In such cases, nothing remains to be dated. Karst forms of individual evolution stages (cycles) can also be destroyed by erosion, denudation and abrasion without the necessity of the destruction of the whole sequence of karst rocks. Temporary and/or final interruption of the karstification process can be caused by the fossilisation of karst due to loss of its hydrological function. Such fossilisation can be caused by metamorphism, mineralisation,
marine transgressions, burial by continental deposits or volcanic products, tectonic movements, climatic change etc. Known karst records for the 1st and 2nd orders of stratigraphic discontinuity cover only from 5 to 60 % of geological time. The shorter the time available for karstification, the greater is the likelihood that karst phenomena will be preserved in the stratigraphic record. While products of short-lived karstification on shallow carbonate platforms can be preserved by deposition during the immediately succeeding sea-level rise, products of more pronounced karstification can be destroyed by a number of different geomorphic
processes. The longer the duration of subaerial exposure, the more complex are those geomorphic agents.
Owing to the fact that unmetamorphosed or only slightly metamorphosed karst rocks containing karst and caves have occurred since Archean, we can apply a wide range of geochronologic methods. Most established dating methods can be utilised for direct and/or indirect dating of karst and paleokarst. The karst/paleokarst fills are very varied in composition, including a wide range of clastic and chemogenic sediments, products of surface and subsurface volcanism (lava, volcaniclastic materials, tephra), and deepseated
processes (hydrothermal activity, etc). Stages of evolution can also be based on dating correlated sediments that do not fill karst voids directly. The application of individual dating methods depends on their time ranges: the older the subject of study, the more limited is the choice of method. Karst and cave fills are relatively special kinds of geologic materials. The karst environment favours both the preservation of paleontological remains and their destruction. On one hand, karst is well known for its richness of paleontological sites, on the other hand most cave fills are complete sterile, which is true especially for the inner-cave facies. Another
problematic feature of karst records is the reactivation of processes, which can degrade a record by mixing karst fills of different ages.


Landscape Evolution and Cave Development in Response to Episodic Incision of the Cumberland River, Tennessee and Kentucky, USA., 2003, Anthony, Darlene M. Ph. D.

Episodic incision punctuated by periods of base level stability during the Plio-Pleistocene left the Upper Cumberland River in Tennessee and Kentucky deeply entrenched into the unglaciated Appalachian Plateaus. The relative chronology of episodic river incision and base level stability is well documented thanks to over a century of careful mapping of upland surfaces, inset straths, and terrace gravels. Constraining the timing of these incision events has been difficult, however, primarily due to a lack of suitable dating methods for terrace materials ranging from several hundred thousand to several million years of age, and reworking of upland gravels onto lower terraces. These problems are solved by dating the burial age of undisturbed cave sediments in place of terrace deposits, using the differential decay of cosmogenic 26Al and 10Be in quartz exposed to cosmic radiation at the surface. This study offers a new chronology of river incision beginning with initial incision into the Highland Rim after ~3.5 Ma; development of the Parker strath between ~3.5 and ~2 Ma; incision of the Parker strath at ~2 Ma; development of a major terrace beneath the Parker strath between ~2 and ~1.5 Ma; incision into this terrace at ~1.3 Ma; and the development of several discontinuous terraces above the modern flood plain between ~1.3 Ma and the present.
Large caves on tributaries of the Upper Cumberland River record a headward wave of incision in the Pliocene and Early Pleistocene. The passage of a knickpoint in the system is modeled as a perturbation to steady-state incision according to the stream power law, which is tested against the abandonment dates in seven caves. Model results for m/n = 0.68 are within previously published theoretical and empirical values of 0.5 to 1.0, but suggest that values for the drainage-area exponent m are several times higher
than previous studies. This may be caused by a stronger variance of discharge to drainage area in fluviokarst reaches compared with non-karst watersheds. Knickpoint migration rates in limestone bedrock channels of fluviokarst tributaries to the Cumberland River are calculated between 10-18 cm/year during the Plio-Pleistocene, with m = 1.91 and m/n = 0.79.


Dating Methods: Archaeological, 2004, Latham A. G.

Dating ancient caves and related palaeokarsts, 2005, Osborne, R. A. L.

There are few cases of open caves that have been reliably dated to ages greater than 65 Ma. This does not mean that such caves are extremely rare, rather it is difficult to reliably establish that a cave, or palaeokarst related to a cave, is this old. Relative dating methods such as: - regional stratigraphic, lithostratigraphic, biostratigraphic, relative climatic, relative isotopic, morphostratigraphic, and regional geomorphic are very useful. They suffer however from significant difficulties, and their results lack the impact of a crisp numerical date. While many of the methods used to date younger caves will not work over the required age range, some isotopic methods and palaeomagnetic methods have been applied with varying degrees of success. While finding something to date and having it dated is difficult enough, producing the date is rarely the end of the story. The difficult issue is not the date or relative correlation itself, but what the date or correlation means. Demonstrating that caves are ancient seems to rapidly become beset with the old adage that “extraordinary claims require extraordinary proof”. The presence of a well-dated or correlated sediment in a cave does not necessarily mean that the cave is that old or older. Perhaps the dated material was stored somewhere in the surrounding environment and deposited much more recently in the cave. A lava flow in a cave must be demonstrated conclusively to be a flow, not a dyke or a pile of weathered boulders washed into the cave. It must be conclusively shown that dated minerals were precipitated in the cave and not transported from elsewhere. There seems little doubt that in the future more ancient caves, or ancient sections of caves, will be identified and that as a result our perception of the age of caves in general will change.


Dating ancient caves and related palaeokarsts, 2005, Osborne, L. Armstrong R.

There are few cases of open caves that have been reliably dated to ages greater than 65 Ma. This does not mean that such caves are extremely rare, rather it is difficult to reliably establish that a cave, or palaeokarst related to a cave, is this old. Relative dating methods such as: - regional stratigraphic, lithostratigraphic, biostratigraphic, relative climatic, relative isotopic, morphostratigraphic, and regional geomorphic are very useful. They suffer however from significant difficulties, and their results lack the impact of a crisp numerical date. While many of the methods used to date younger caves will not work over the required age range, some isotopic methods and palaeomagnetic methods have been applied with varying degrees of success. While finding something to date and having it dated is difficult enough, producing the date is rarely the end of the story. The difficult issue is not the date or relative correlation itself, but what the date or correlation means. Demonstrating that caves are ancient seems to rapidly become beset with the old adage that "extraordinary claims require extraordinary proof". The presence of a well-dated or correlated sediment in a cave does not necessarily mean that the cave is that old or older. Perhaps the dated material was stored somewhere in the surrounding environment and deposited much more recently in the cave. A lava flow in a cave must be demonstrated conclusively to be a flow, not a dyke or a pile of weathered boulders washed into the cave. It must be conclusively shown that dated minerals were precipitated in the cave and not transported from elsewhere. There seems little doubt that in the future more ancient caves, or ancient sections of caves, will be identified and that as a result our perception of the age of caves in general will change.


Cave and Karst evolution in the Alps and their relation to paleoclimate and paleotopography, 2007, Audra P. , Bini A. , Gabrovš, Ek F. , Hä, Uselmann P. , Hoblé, A F. , Jeannin P. Y. , Kunaver J. , Monbaron M. , Š, Uš, Terš, Ič, F. , Tognini P. , Trimmel H. , Wildberger A.

Progress in the understanding of cave genesis processes, as well as the intensive research carried out in the Alps during the last decades, permit to summarize the latest knowledge about Alpine caves. The phreatic parts of cave systems develop close to the karst water table, which depends on the spring position, which in turn is generally related to the valley bottom. Thus, caves are directly linked with the geomorphic evolution of the surface and reflect valley deepening. The sediments deposited in the caves help to reconstruct the morphologic succession and the paleoclimatic evolution. Moreover, they are the only means to date the caves and thus the landscape evolution. Caves appear as soon as there is an emersion of limestone from the sea and a water table gradient. Mesozoic and early tertiary paleokarsts within the alpine range prove of these ancient emersions. Hydrothermal karst seems to be more widespread than previously presumed. This is mostly due to the fact that usually, hydrothermal caves are later reused (and reshaped) by meteoric waters. Rock-ghost weathering is described as a new cave genesis agent. On the contrary, glaciers hinder cave genesis processes and fill caves. They mainly influence cave genesis indirectly by valley deepening and abrasion of the caprock. All present datings suggest that many alpine caves (excluding paleokarst) are of Pliocene or even Miocene age. Progress in dating methods (mainly the recent evolution with cosmogenic nuclides) should permit, in the near future, to date not only Pleistocene, but also Pliocene cave sediments absolutely.


Palaeomagnetism and Magnetostratigraphy of Karst Sediments in Slovenia, 2008, Zupan Hajna Nadja, Mihevc Andrej, Pruner Petr, Bosk Pavel

Results of more than 10 years intensive study of palaeomagnetic properties and magnetostratigraphy of karst sediments in Slovenia are summarized. The research covered the most important karst regions, from lowlands to high mountains. It included both well-known and documented sites, and relatively unknown or newly found locations in caves and surface karst sediments. The territory of Slovenia, with its numerous karst regions, long history of karst evolution and relatively good knowledge of the karst sediments represents an ideal testing ground for comprehensive research on individual infilling processes, their stages and periods. The questions concentrated to the time span of karst evolution in Slovenia, age of karst surfaces, speleogenesis and rates of processes. The majority of karst sediment dating has been carried out in south-western Slovenia (in the north-western part of the Dinaric Karst, which is known as the Kras) where Eocene flysch is the last marine deposit preserved in the geologic record. The Oligocene to Quaternary period represented mostly terrestrial phase with prevailing surface denudation and erosion processes. Therefore only karst sediments preserved on karst surface and in subsurface can yield some facts and ideas of karst evolution and its age. In the book 21 locations are described, 19 from Slovenia and two Italian Karst. Each location is placed in space describing geological, karstological and speleological properties. A precise description of studied sediment profile with lithological and mineralogical composition follows obtained by various research methods. Every profile contains also the palaeomagnetic results with magnetostratigraphic and palaeomagnetic properties.

Dating of cave sediments by the application of the palaeomagnetic method is a difficult and sometimes risky task, as the method is comparative in its principles and does not provide numerical ages. Repeated sampling in some profiles have shown that only dense sampling (high-resolution approach with sampling distance of 2?4 cm), can ensure reliable results. Correlation of the magnetostratigraphic results we obtained, and the interpretations tentatively placed upon them has shown that in the majority of cases, application of an additional dating method is needed to either reinforce the palaeomagnetic data or to help to match them with the geomagnetic polarity timescale.

The most important result is the discovery that cave fills have substantially older ages than generally expected earlier (max. about 350 ka). Palaeomagnetic data in combination with other dating methods, especially biostratigraphy, have shifted the possible beginning not only of the speleogenesis but also of the cave filling processes in Slovenia far below the Tertiary/Quaternary boundary. Results suggest that there were probably some distinct phases of massive deposition in caves. The oldest one took place from about 1.8 to more than 5.4 Ma (with two phases at 1.8 ? 3.6 and about 4.1 ? 5.4 Ma). The data support and better define the estimated ages of the surface and cave sediments that were based on geomorphic evidences, especially from unroofed caves.

The evolution of the caves took part within one karstification period, which began with the regression of Eocene sea and exposing of limestones at the surface within complicated overthrusted structure, which formed principally during Oligocene to early Miocene.


UTh dating of speleothems to investigate the evolution of limestone caves in the Gunung Mulu National Park, Sarawak, Malaysia, 2013, Moseley G. E. , Richards D. A. , Smith Ch. , Smart P. L. , Hoffmann D. L. , Farrant A. R.

The Gunung Mulu National Park, Sarawak, Malaysia has been a focus of scientific research and exploration for several decades. Previous work investigated the relationship between fluvial incision into the limestone massif and the chronological evolution of the 500m-deep network of cave passages. This study involved analyses of newly available speleothem material using state-of-the-art U-Th dating methods and assessment of the potential for extension of the chronological record using U-Pb dating techniques.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Results 1 to 15 of 17
You probably didn't submit anything to search for