Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That pond is a small body of surface water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for deep-seated karst (Keyword) returned 9 results for the whole karstbase:
Hydrogeology of Gypsum formations., 1996, Klimchouk Alexander
Detailed explanation of hydrogeological characteristics of gypsum aquifers is given in various situations: deep-seated karst-confined conditions, subjacent, entrenched and denuded karst types-semi-confined, phreatic and vadose conditions. The hydrogeological evolution of barren exposed gypsum karst and flow velocities in gypsum karst aquifers is also discussed.

Hydrothermal speleogenesis: its settings and peculiar features, 2000, Dublyansky Y. V.
Three major settings of hydrothermal karst development are: endokarst, deep-seated karst, and shallow karst. Endokarst develops at great depth, where the pressure exceeds the strength of the rock and voids can exist only if they are filled with overpressured fluid, which prevents them from collapse. In the deep-seated setting hydrothermal karst develops in response to changes of pressure and temperature of upwelling fluids. Two large zones: (1) zone of carbonate dissolution and (2) zone of carbonate precipitation form within hydrothermal systems. The shallow setting encompasses the interface between thermal and low-temperature waters or the zone near the upper surface of thermal waters. Four major conditions, which create and enhance solutional capacity in hydrothermal systems are: (1) elevated temperature gradients (for carbonated waters); (2) elevated rate of discharge (for carbonated waters); (3) oxidation of hydrogen sulfide; and (4) mixing waters of contrasting chemistry. These features readily occur in the shallow hydrothermal karst setting; the largest hydrothermal caves are formed there. Morphologies and dimensions of hydrothermal caves range from pores, individual rooms, and single conduit caves to large three-dimensional mazes. Cave deposits hold clues as to their origin in their mineralogy, morphology, chemistry, isotopic properties, and fluid inclusion temperatures.

Propagation of a floodwave in karst during artificially generated recession - case study of Banjica spring (Bela Palanka, Eastern Serbia), 2003, Zlokolicamandić, Milena, Jalić, Ljubojević, Jelena

During hydrogeological research in the area of the north-eastern foothills of Mt. Suva Planina in Eastern Serbia, a borehole of 100 m of depth was drilled in the vicinity of a lukewarm spring, Banjica. The borehole had an artesian discharge, which caused artificially generated recession in the adjoining spring Banjica. During this hydrodynamical test, great quantities of precipitation occured in the hinterland of the spring, having the effect of a floodwave. The presence of two types of karst is obvious in the field - confined karst and covered karst. The hydrogeological response to the floodwave during artificially generated recession proved the presence of deep-seated karst also. This can be detected by comparative analysis of the hydrograph of the Banjica spring and the graph of pressures in the borehole. In this way, not only the presence, but also the characteristics of the karst can be proved (e.g. dimensions and types of karst conduits, relative age of karst, size and extension of the aquifer, etc.).


Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective., 2007, Klimchouk A. B.

This book provides an overview of the principal environments, main processes and manifestations of hypogenic speleogenesis, and refines the relevant conceptual framework. It consolidates the notion of hypogenic karst as one of the two major types of karst systems (the other being epigenetic karst). Karst is viewed in the context of regional groundwater flow systems, which provide the systematic transport and distribution mechanisms needed to produce and maintain the disequilibrium conditions necessary for speleogenesis. Hypogenic and epigenic karst systems are regularly associated with different types, patterns and segments of flow systems, characterized by distinct hydrokinetic, chemical and thermal conditions. Epigenic karst systems are predominantly local systems, and/or parts of recharge segments of intermediate and regional systems. Hypogenic karst is associated with discharge regimes of regional or intermediate flow systems.

Various styles of hypogenic caves that were previously considered unrelated, specific either to certain lithologies or chemical mechanisms are shown to share common hydrogeologic genetic backgrounds. In contrast to the currently predominant view of hypogenic speleogenesis as a specific geochemical phenomenon, the broad hydrogeological approach is adopted in this book. Hypogenic speleogenesis is defined with reference to the source of fluid recharge to the cave-forming zone, and type of flow system. It is shown that confined settings are the principal hydrogeologic environment for hypogenic speleogenesis. However, there is a general evolutionary trend for hypogenic karst systems to lose their confinement due to uplift and denudation and due to their own expansion. Confined hypogenic caves may experience substantial modification or be partially or largely overprinted under subsequent unconfined (vadose) stages, either by epigenic processes or continuing unconfined hypogenic processes, especially when H2S dissolution mechanisms are involved.

Hypogenic confined systems evolve to facilitate cross-formational hydraulic communication between common aquifers, or between laterally transmissive beds in heterogeneous soluble formations, across cave-forming zones. The latter originally represented low-permeability, separating units supporting vertical rather than lateral flow. Layered heterogeneity in permeability and breaches in connectivity between different fracture porosity structures across soluble formations are important controls over the spatial organization of evolving ascending hypogenic cave systems. Transverse hydraulic communication across lithological and porosity system boundaries, which commonly coincide with major contrasts in water chemistry, gas composition and temperature, is potent enough to drive various disequilibrium and reaction dissolution mechanisms. Hypogenic speleogenesis may operate in both carbonates and evaporites, but also in some clastic rocks with soluble cement. Its main characteristic is the lack of genetic relationship with groundwater recharge from the overlying or immediately adjacent surface. It may not be manifest at the surface at all, receiving some expression only during later stages of uplift and denudation. In many instances, hypogenic speleogenesis is largely climate- independent.

There is a specific hydrogeologic mechanism inherent in hypogenic transverse speleogenesis (restricted input/output) that suppresses the positive flow-dissolution feedback and speleogenetic competition in an initial flowpath network. This accounts for the development of more pervasive channeling and maze patterns in confined settings where appropriate structural prerequisites exist. As forced-flow regimes in confined settings are commonly sluggish, buoyancy dissolution driven by either solute or thermal density differences is important in hypogenic speleogenesis.

In identifying hypogenic caves, the primary criteria are morphological (patterns and meso-morphology) and hydrogeological (hydrostratigraphic position and recharge/flow pattern viewed from the perspective of the evolution of a regional groundwater flow system). Elementary patterns typical for hypogenic caves are network mazes, spongework mazes, irregular chambers and isolated passages or crude passage clusters. They often combine to form composite patterns and complex 3- D structures. Hypogenic caves are identified in various geological and tectonic settings, and in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in cave patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Presence of the characteristic morphologic suites of rising flow with buoyancy components is one of the most decisive criteria for identifying hypogenic speleogenesis, which is much more widespread than was previously presumed. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world.

The refined conceptual framework of hypogenic speleogenesis has broad implications in applied fields and promises to create a greater demand for karst and cave expertise by practicing hydrogeology, geological engineering, economic geology, and mineral resource industries. Any generalization of the hydrogeology of karst aquifers, as well as approaches to practical issues and resource prospecting in karst regions, should take into account the different nature and characteristics of hypogenic and epigenic karst systems. Hydraulic properties of karst aquifers, evolved in response to hypogenic speleogenesis, are characteristically different from epigenic karst aquifers. In hypogenic systems, cave porosity is roughly an order of magnitude greater, and areal coverage of caves is five times greater than in epigenic karst systems. Hypogenic speleogenesis commonly results in more isotropic conduit permeability pervasively distributed within highly karstified areas measuring up to several square kilometers. Although being vertically and laterally integrated throughout conduit clusters, hypogenic systems, however, do not transmit flow laterally for considerable distances. Hypogenic speleogenesis can affect regional subsurface fluid flow by greatly enhancing initially available cross- formational permeability structures, providing higher local vertical hydraulic connections between lateral stratiform pathways for groundwater flow, and creating discharge segments of flow systems, the areas of low- fluid potential recognizable at the regional scale. Discharge of artesian karst springs, which are modern outlets of hypogenic karst systems, is often very large and steady, being moderated by the high karstic storage developed in the karstified zones and by the hydraulic capacity of an entire artesian system. Hypogenic speleogenesis plays an important role in conditioning related processes such as hydrothermal mineralization, diagenesis, and hydrocarbon transport and entrapment.

An appreciation of the wide occurrence of hypogenic karst systems, marked specifics in their origin, development and characteristics, and their scientific and practical importance, calls for revisiting and expanding the current predominantly epigenic paradigm of karst and cave science.


MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

Hypogenic speleogenesis can be identi?ed at different scales (basinal ?ow patterns at the regional scale, cave patterns at cave system scale, meso- and micromorphology in cave passages). We focus here on small scale features produced by both corrosion and deposition. In the phreatic zone, the corrosion features (speleogens) are a morphologic suite of rising ?ow forms, phreatic chimneys, bubble trails. At the water table are thermo-sulfuric discharge slots, notches with ?at roofs. Above a thermal water table the forms re?ect different types of condensation runoff: wall convection niches, wall niches, ceiling cupolas, ceiling spheres, channels, megascallops, domes, vents, wall partitions, weathered walls, boxwork, hieroglyphs, replacement pockets, corrosion tables, and features made by acid dripping, such as drip tubes, sulfuric karren and cups. Each type of feature is described and linked to its genetic process. Altogether, these features are used to identify the dominant processes of speleogenesis in hypogenic cave systems. Hypogenic caves were recognized early, especially where thermal or sulfuric processes were active (MARTEL, 1935; PRINCIPI, 1931). However SOCQUET (1801) was one of the earliest modern contributors to speleogenetic knowledge, and probably the ?rst to identify the role of sulfuric speleogenesis by condensation-corrosion due to thermal convection. More recent major contributions evidenced the role of sulfuric speleogenesis and hydrothermalism (e.g. DUBLYANSKY, 2000; EGEMEIER, 1981; FORTI, 1996; GALDENZI AND MENICHETTI, 1995; HILL, 1987; PALMER AND PALMER, 1989). However, most of these case-studies were often considered as “exotic”, regarding the “normal” (i.e. epigenic) speleogenesis. Only recently, KLIMCHOUK (2007) provided a global model, allowing the understanding of “hypogenic” speleogenesis and gathering the characteristics of hypogenic caves. Consequently, the number of caves where a hypogenic origin is recognized dramatically increased during the last years. The hypogenic origin can be recognized at the regional scale (deep-seated karst in basins), at the scale of an individual cave system because of distinctive features in its pattern, by studying the morphology of the cave conduits, or at the local scale of wall features made by corrosion processes (i.e. speleogens). Such type of features depict the characteristics of local cave development, and by extension the characteristics of speleogenesis. The description and interpretation of hypogenic speleogens is generally scattered in the literature. The aim of this paper is to gather the most important hypogenic speleogens, considered here as indicators, and used for the identi?cation and characterization of the hypogenic speleogenesis. Our knowledge is based on the compilation of about 350 caves from the literature, and the study of some of the most signi?cant caves (AUDRA, 2007; AUDRA et al., 2002, 2006). In this paper, we focus on the speleogens (i.e. wall- scale corrosion features) as indicators of hypogenic speleogenesis; we exclude here solution feature at larger scale such as conduits and cave systems and depositional features (sediments). Some of the features observed in the sulfuric caves are speci?cally caused by this strong acid. Some features are closely associated with hydrothermalism. Other features that are widespread in hypogene caves are created without sulfuric in?uence. The following typology mainly takes into account the type of runoff. In con?ned settings with slow phreatic ?ow, cave features are common to all types of hypogene processes, whether they are sulfuric or not (i.e. carbonic, hydrothermal…). In uncon?ned settings, condensation-corrosion processes take place above the water table. These aerial processes, enhanced by the oxidation of sul?des by the thermal convections, and by the microbial processes, result in a large variety of cave features. Some features are closely related to speci?c processes. Consequently, they are considered as valuable indicators of the sulfuric speleogenesis.


The influences of coal mining on the large karst springs in North China, 2011, Wu Qiang, Xing Li Ting, Ye Chun He, Liu Yuan Zhang

Environmental damage, to a greater or lesser degree, is caused by coal mining. On the basis of analyzing the hydrogeological conditions of the mining areas, this paper provides a sum-up of the characteristics of water disasters in North China-type Coalfield. Researching into the Baimai Spring group, this paper explores the relation between karst water and groundwater of coal-measure strata, using the methods of pumping test, dynamic observation, and tracer test. After working over the impact of mine water-inrush on spring dynamics, this paper estimates the contributory level of karst water to mining drainage. This paper holds that the mine water-inrush mainly results from karst water, with the fault structures acting as channels; the keys of mine water-inrush are faulty density, intersection and endpoint fault. Finally, this paper suggests that mining below Mine-9 be forbidden, and that below Mine-7 be properly mined, which provides the scientific basis for preserving springs and preventing water disasters in the mining areas.


Speleogenesis, Hypogenic, 2012, Klimchouk, Alexander

Recognition of the cave development at depths below the near-surface environment, largely during mesogenesis by processes not directly related to the surface, signifies a major paradigm shift in karst science, previously overwhelmingly dominated by the epigene concepts and models. Such caves form by upwelling waters of meteoric and deeper origins driven by hydrostatic pressure and other sources of energy. They occur widely through the upper part of the Earth’s crust, although become available for direct study only when shifted to the shallow subsurface during uplift and erosion, or through mines or boreholes. Hypogenic caves form in different rocks in a wide range of geological and tectonic settings and include some of the largest known caves in the world. Hypogene karst is one of the fundamental categories of karst, at least of equal importance with more familiar epigenic karst. The more comprehensive approach to karst that emerges implies that speleogenesis should be viewed in time scales of the host rock life, in the context of its diagenetic evolution and the evolution of basin-scale groundwater circulation regimes and systems in response to tectonic processes and geomorphic development. The rapidly evolving deeper understanding of hypogene speleogenesis has broad implications for many applied fields such as prospecting and characterization of hydrocarbon reservoirs and mineral resources, groundwater management, geological engineering, and related activities.


Seismic study of the low-permeability volume in southern France karst systems, 2013, Galibert P. Y. , Valois R. , Mendes M. , Gurin R.

Locating groundwater in deep-seated karst aquifers is inherently difficult. With seismic methods, we studied the upper epikarst and the underneath low-permeability volume (LPV) of several karst systems located in the southern Quercy and Larzac regions of France and found that refraction tomography was effective only in the epikarst and not in the LPV. We evaluated a 3D case study using a combination of surface records and downhole receivers to overcome this limitation. This 3D approach unveiled a set of elongated furrows at the base of the epikarst and identified heterogeneities deep inside the LPV that may represent high-permeability preferred pathways for water inside the karst. To achieve the same result when no borehole was available, we studied seismic amplitudes of the wavefield, recognizing that wave-induced fluid flow in low-permeability carbonates is a driving mechanism of seismic attenuation. We developed a workflow describing the heterogeneity of the LPV with spectral attributes derived from surface-consistent decomposition principles, and we validated its effectiveness at benchmark locations. We applied this workflow to the 3D study and found a low-amplitude signal area at depth; we interpreted this anomaly as a water-saturated body perched above the aquifer.


Hypogene Speleogenesis, its hydrogeological significance and role in karst evolution (in Russian), 2013, Klimchouk A. B.

The book examines empirical and theoretical regularities of hypogene speleogenesis and reveals its hydrogeological significance and the role in karst evolution. It is demonstrated that hypogene karst, along with epigenic karst, is the fundamental and wide spread genetic variety of karst, which nature and peculiar features call for revision and refinement of some basic notions of the general karst paradigm. A new approach is advocated to a definition of the notion of karst, where the latter is viewed as a specific groundwater circulation system with key properties determined by speleogenesis.

It is shown that major distinctions in mechanisms of the development of karstic void-conduit structures (types of speleogenesis) are determined by hydrodynamic peculiarities of confined and unconfined groundwater systems, and by the circulation vector. An evolutionary classification of karst is elaborated, which main categories cumulatively reflect its origin and characterize its most essential properties. Hypogene karst is a natural stage in the evolution of karst groundwater circulation geosystems in the course of regressive lithogenesis and hydrogeological cycles.

The book reveals principal regional regularities and type settings of hypogene speleogenesis, and describes its functional, structural and morphological peculiar features. It demonstrates the significance of hypogene speleogenesis in the formation of hydrogenic deposits of mineral resources and hydrocarbons in soluble strata and adjacent formations, and its role in karst hazards. The genetic and evolutionary approach is outlined and advocated in dealing with karst-related applied issues of hydrogeology, geological engineering, petroleum and ore geology.


Results 1 to 9 of 9
You probably didn't submit anything to search for