Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That perforation is holes or openings in well casing to permit water inflow into a well [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for depositional sequence (Keyword) returned 9 results for the whole karstbase:
The Upper Permian-Triassic strata of the SE Iberian Ranges, eastern Spain, display the classic Germanic-type facies of Buntsandstein, Muschelkalk and Keuper. The Muschelkalk is represented by two carbonate units with a siliciclastic-evaporitic unit in between. Their ages range from Anisian to basal Carnian (Middle Triassic to base of the Upper Triassic). The carbonate units represent ramps that evolved during the early thermal subsidence period which succeeded the first rift phase. Seven facies have been distinguished, representing shoals, tidal flats, organic buildups and lagoons, as well as a karst horizon in the lower carbonatic unit. Most of the carbonates were dolomitised. Three processes of dolomitization are invoked: mixing waters, penecontemporaneous seepage refluxion, and deep burial. The top of the Buntsandstein and the Muschelkalk facies are subdivided into two depositional sequences, including lowstand, transgressive and highstand systems tracts, with superimposed tectonic and eustatic controls

Middle Devonian carbonates (250-430 m thick) of the eastern Great Basin were deposited along a low energy, westward-thickening, distally steepened ramp. Four third-order sequences can be correlated across the ramp-to-basin transition and are composed of meter-scale, upward-shallowing carbonate cycles (or parasequences). Peritidal cycles (shallow subtidal facies capped by tidal-flat laminites) constitute 90% of all measured cycles and are present across the entire ramp. The peritidal cycles are regressive- and transgressive-prone (upward-deepening followed by upward-shallowing facies trends). Approximately 80% of the peritidal cycle caps show evidence of prolonged subaerial exposure including sediment-filled dissolution cavities, horizontal to vertical desiccation cracks, rubble and karst breccias, and pedogenic alteration; locally these features are present down to 2 m below the cycle caps. Subtidal cycles (capped by shallow subtidal facies) are present along the middle-outer ramp and ramp margin and indicate incomplete shallowing. submerged subtidal cycles (64% of all subtidal cycles) are composed of deeper subtidal facies overlain by shallow subtidal facies. Exposed subtidal cycles are composed of deeper subtidal facies overlain by shallow subtidal facies that are capped by features indicative of prolonged subaerial exposure (dissolution cavities and brecciation). Average peritidal and subtidal cycle durations are between approximately 50 and 130 k.y. (fourth- to fifth-order). The combined evidence of abundant exposure-capped peritidal and subtidal cycles, transgressive-prone cycles, and subtidal cycles correlative with updip peritidal cycles indicates that the cycles formed in response to fourth- to fifth-order, glacio-eustatic sea-level oscillations. Sea-level oscillations of relatively low magnitude (< 10 m) are suggested by the abundance of peritidal cycles, the lack of widely varying, water-depth-dependent facies within individual cycles, and the presence of noncyclic stratigraphic intervals within intrashelf-basin, slope, and basin facies. Noncyclic intervals represent missed subtidal beats when the seafloor lay too deep to record the effects of the short-term sea-level oscillations. Exposure surfaces at the tops of peritidal and subtidal cycles represent one, or more likely several, missed sea-level oscillations when the platform lay above fluctuating sea level, but the amplitude of fourth- to fifth-order sea-level oscillation(s) were not high enough to flood the ramp. The large number of missed beats (exposure-capped cycles), specifically in Sequences 2 and 4, results in Fischer plots that show poorly developed rising and falling limbs (subdued wave-like patterns); consequently the Fischer plots: are of limited use as a correlation tool for these particular depositional sequences. The abundance of missed beats also explains why Milankovitch-type cycle ratios (similar to 5:1 or similar to 4:1) are not observed and why such ratios would not be expected along many peritidal-cycle-dominated carbonate platforms

Facies differentiation and sequence stratigraphy in ancient evaporite basins - An example from the basal Zechstein (Upper Permian of Germany), 1999, Steinhoff I. , Strohmenger C. ,
Due to excellent preservation, the Werra Anhydrite (Al), the upper member of the Upper Permian Zechstein cycle I (Ist cycle, Z1), is readily studied in terms of the distribution of sulfate facies and sequence stratigraphy that can be interpreted from these facies. In this study cores taken from seven wells in the Southern Zechstein Basin were examined for their sedimentary structures and various petrographic features. Facies interpretation and depositional sequences are based on detailed examination of core material. Four main facies environments have been identified: (I) supratidal (II) intertidal (III) shallow subtidal, and (IV) deeper (hypersaline) subtidal. These are further subdivided into 10 subfacies types: (1) karst and (2) sabkha within the supratidal environment (I), (3) algal tidal-flat, (4) tidal flat and (5) beach deposit within the intertidal environment (II), (6) salina, and (7) sulfate arenites within the shallow subtidal enviromnent (III). The (8) slope subfacies type commonly associated with (9) turbidites and the (10) basin subfacies type subdivide the deeper subtidal environment (IV). Vertical stacking patterns of these facies and subfacies types reveal the sequence stratigraphic development of the sulfate cycles in response to sea-level and salinity fluctuations. The lower Werra Anhydrite (belonging to Zechstein Sequence ZS2) is characterized by a transgressive systems tract (IST) overlying the transgressive surface of Zechstein Sequence ZS2 within the Al-underlying upper Zechstein Limestone (Cal). The TST of the AT is several tens of meters thick in platform areas, where it is built up by sulfate arenites and swallow-tail anhydrite-after-gypsum, and thins out to a few meters of thickness toward the condensed basinal section, where laminites ('Linien-Anhydrit') are predominant. Most of the Al succession consists of three relatively thick parasequences belonging to the highstand systems tract (HST) that shows typical prograding sets. Enhanced platform Buildup, including sulfate arenites, salina deposits, intertidal sediments, and sabkha precipitation as well as turbidite shedding off the platforms produced marginal ''sulfate walls' up to 400 m thick as platform to slope portions of the Werra Anhydrite. Seaward, the Al thins to a few tens of meters of laminated sulfate basin muds. Increasingly pronounced Al topography during highstand narrowed the slope subfacies belt parallel to the platform margin This contrasts with the broad but considerably thinner slope deposits of transgressive times with much shallower slopes. The ensuing sea-level lowstand is reflected by a sequence boundary on top of the karstified Al-platform and a lowstand wedge (Zechstein Sequence ZS3) overlying portions of the slope and basinal subfacies of the Al highstand systems tract Beyond the lateral limits of the lowstand wedge, the sequence boundary merges with the transgressive surface of ZS3, shown by the lithologic change from the Al anhydrites to the overlying carbonates of the Stassfurt Carbonates ('Haupt Dolomit' Main Dolomite, Ca2). The Basal Anhydrite (A2), which overlies and seals the carbonate reservoir of the Ca2, can also be subdivided into systems tracts by means of facies analysis. It is, however, much less complex than the Al and is comprised almost exclusively of a transgressive systems tract of Zechstein Sequence ZS4

Pedogenic and Karstic Features at the Boundaries of Bathonian Depositional Sequences in the Grands Causses Area (Southern France): Stratigraphic Implications, 2000, Charcosset P, Combes Pj, Peybernes B, Ciszak R, Lopez M,
Several exposure surfaces (D1 to D6) underlain by paleosols, paleokarstic surfaces, and subsurface paleokarsts were identified in the Middle to Upper Bathonian Calcaires a Stipites and Dolomies II Formations in southern France. Two kinds of paleosols with different degrees of maturity were recognized: simple ferruginous crusts, capping very irregular bed surfaces, and a rooted horizon. The paleokarstic surfaces are marked by nodular horizons and paleocaves. On the Cevennes shoal, the paleokarsts discontinuities are associated with synsedimentary tectonic processes, which did not extend into the overlying Dolomies II Formation. Subsurface paleokarsts were observed in the Cirque du Bout du Monde (on the Cevennes shoal) within the Calcaires a Stipites Formation, just beneath surface D5. They are characterized by stronger brecciation of the beds. Most of the paleokarstic discontinuities described in this study correspond to the boundaries of four third-order depositional sequences, Bt 1 to Bt 4 (D1 at the base of Bt 1; D2, D3, D4, and D5 capping Bt 1, Bt 2, Bt 3, and Bt 4, respectively; D6 at the top of the Dolomies II Formation). D1, D2, and D3 paleokarsts are geographically limited to the Grands Causses Graben, whereas D4, D5, and D6 are present only on the Cevennes shoal. Geographic trends of paleokarsts confirm the transgressive trend of sequences Bt 3 and Bt 4, and of the overlying Dolomies II Formation towards the shoal. D6 paleokarstic features were also observed within the uppermost part of the Dolomies II Formation in the Horst de Saint-Bresson. The latter transgressive process provides evidence for subaerial exposure of this paleostructure during the latest Bathonian-Callovian interval, induced by tectonic uplifts

The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review, 2001, Sarg J. F. ,
World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins.Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope.Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps.Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior.Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons

The Barremian-Aptian Evolution of The Eastern Arabian Carbonate Platform Margin (Northern Oman), 2003, Hillgartner Heiko, Van Buchem Frans S. P. , Gaumet Fabrice, Razin Philippe, Pittet Bernard, Grotsch Jurgen, Droste Henk,
Carbonate platform margins are sensitive recorders of changes in sea level and climate and can reveal the relative importance of global and regional controls on platform evolution. This paper focuses on the Barremian to Aptian interval (mid Cretaceous), which is known for climatic and environmental changes towards more intensified greenhouse conditions. The study area in the northern Oman mountains offers one of the very few locations where the Cretaceous carbonate margin of the Arabian Plate can be studied along continuous outcrops. Our detailed sedimentological and sequence stratigraphic model of the platform margin demonstrates how major environmental and ecological changes controlled the stratigraphic architecture. The Early Cretaceous platform margin shows high rates of progradation in Berriasian to Hauterivian times followed by lower rates and some aggradation in the Late Hauterivian to Barremian. High-energy bioclastic and oolitic sands were the dominant deposits at the margin. Turbidites were deposited at the slope and in the basin. The Early Aptian platform margin shows a marked change to purely aggradational geometries and a welldeveloped platform barrier that was formed mainly by microbial buildups. The sudden dominance in microbial activity led to cementation and stabilization of the margin and slope and, therefore, a decrease of downslope sediment transport by turbidites. In the Late Aptian, large parts of the Arabian craton were subaerially exposed and a fringing carbonate platform formed. Seven Barremian to Early Albian large-scale depositional sequences reflecting relative sea-level changes are identified on the basis of time lines constrained by physical correlation and biostratigraphy. The reconstruction of the margin geometries suggests that tectonic activity played an important role in the Early Aptian. This was most likely related to global plate reorganization that was accompanied by increased volcanic activity in many parts of the world. Along the northeastern Arabian platform the associated global changes in atmospheric and oceanic circulation are recorded with a change in platform-margin ecology from an ooid-bioclast dominated to a microbial dominated margin. Time-equivalent argillaceous deposits suggest an increase in rainfall and elevated input of nutrients onto the platform. This process contributed to the strongly diminished carbonate production by other organisms and favored microbial activity. The platform margin may thus represent a shallow-marine response to the Early Aptian global changes, commonly associated with an oceanic anoxic event in basinal environments

Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming, 2004, Westphal H. , Eberli G. P. , Smith L. B. , Grammer G. M. , Kislak J.

Significant heterogeneity in petrophysical properties, including variations in porosity and permeability, are well documented from carbonate systems. These variations in physical properties are typically influenced by original facies heterogeneity, the early diagenetic environment, and later stage diagenetic overprint. The heterogeneities in the Mississippian Madison Formation in the Wind River basin of Wyoming are a complex interplay between these three factors whereby differences from the facies arrangement are first reduced by pervasive dolomitization, but late-stage hydrothermal diagenesis introduces additional heterogeneity. The dolomitized portions of theMadison Formation formhighly productive gas reservoirs at Madden Deep field with typical initial production rates in excess of 50 MMCFGD. In the study area, the Madison Formation is composed of four third-order depositional sequences that contain several small-scale, higher frequency cycles. The cycles and sequences display a facies partitioning with mudstone to wackestone units in the transgressive portion and skeletal and oolitic packstone and grainstone in the regressive portions. The grainstone packages are amalgamated tidally influenced skeletal and oolitic shoals that cover the entire study area. The basal three sequences are completely dolomitized, whereas the fourth sequence is limestone. The distribution of petrophysical properties in the system is influenced only in a limited manner by the smaller scale stratigraphic architecture. Porosity and permeability are controlled by the sequence-scale stratigraphic units, where uniform facies belts and pervasive dolomitization result in flow units that are basically tied to third-order depositional sequences with a thickness of 65– 100 ft (20–30 m). The best reservoir rocks are found in regressive, coarse-grained dolomites of the lower two sequences. Although the amalgamated shoal facies is heterogeneous, dolomitization decompartmentalized these cycles. Fine-grained sediments in the basal transgressive parts of these sequences, along with caliche and chert layers on top of the underlying sequences, are responsible for a decrease of porosity toward the sequence boundaries and potential flow separation. Good reservoir quality is also found in the third sequence, which is composed of dolomitized carbonate mud. However, reservoir-quality predictions in these dolomudstones are complicated by several phases of brecciation. The most influential of these brecciations is hydrothermal in origin and partly shattered the entire unit. The breccia is healed by calcite that isolates individual dolomite clasts. As a result, the permeability decreases in zones of brecciation. The late-stage calcite cementation related to the hydrothermal activity is the most important factor to create reservoir heterogeneity in the uniform third sequence, but it is also influential in the grainstone units of the first two sequences. In these sequences, the calcifying fluids invade the dolomite and partly occlude the interparticle porosity and decrease permeability to create heterogeneity in a rock in which the pervasive dolomitization previously reduced much of the influence of facies heterogeneity 

Growth, Demise, and Dolomitization of Miocene Carbonate Platforms on the Marion Plateau, Offshore NE Australia, 2006, Ehrenberg Sn, Mcarthur Jm, Thirlwall Mf,
Strontium-isotope stratigraphy has been used to examine the timing of depositional events and dolomitization in two Miocene carbonate platforms cored by Ocean Drilling Program (ODP) Leg 194, just seaward of the Great Barrier Reef. The results provide firm constraints for correlating surfaces and depositional stages between the two platforms and thereby relating seismic sequences previously defined in the off-platform sediments to the lithostratigraphic units described from cores in the seismically transparent platform-top sites. Oyster-bearing beds at the base of both platform successions yield early Oligocene ages (29-31 Ma), thus dating initial transgression of the Marion Plateau's volcanic basement. There followed a period of slow accumulation of shallow-water grainstones rich in quartz and phosphate grains in late Oligocene time (29-23 Ma; seismic Megasequence A). The main growth of the carbonate platforms took place in early to late Miocene time (23-7 Ma), comprising five depositional sequences. The first four of these (seismic Megasequence B) are common to both platforms and terminated with a possible karst surface at 10.7 Ma. Different sedimentologic expression of this megasequence in the two platforms reflects contrasting progradational versus aggradational geometries in the locations studied. The final growth stage (seismic Megasequence C) occurred only in the southern platform and terminated at 6.9 Ma. Both platform-demise events (10.7 and 6.9 Ma) approximately coincide with falls in global sea level combined with longer-term trends of decreasing water temperature. Sr-isotope ages of dolostones increase with depositional age, and older dolostones in the southern platform have more coarsely crystalline and fabric-destructive textures than overlying younger dolostones. These relationships are consistent with dolomitization by normal seawater shortly after deposition and overprinting of multiple times of dolomite recrystallization and cementation in the deeper strata

The Cupcake: a preliminary report on bones found during the excavation of a shaft on Leck Fell, UK , 2011, Thorp, J. A.

Recent excavation work in a shaft known as The Cupcake on Leck Fell in northeast Lancashire, United Kingdom, has produced an interesting assemblage of ancient bones. All the animals represented are of wild species, aurochs (Bos primigenius), wild boar (Sus scrofa), wolf (Canis lupus), and badger (Meles meles). The bones were found at a depth of 8m, with the aurochs uppermost. Skeletal remains of several wild boars lay beneath, with a depth hiatus, suggesting a possible earlier depositional sequence. Differences in the state of preservation of the bones are notable. Bones in the centre of the shaft, in a damp environment, were the worst preserved, whereas the best preserved wild boar skull was recovered from a dry undercut on the southeast side. The lack of domestic species points to an early Holocene skeletal assemblage. Whole body representation suggests these animals died by falling down the shaft accidentally, while browsing on scrub concealing the entranc

Results 1 to 9 of 9
You probably didn't submit anything to search for