Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That ephemeral stream is a stream flowing only in direct response to precipitation [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for distribution (Keyword) returned 572 results for the whole karstbase:
Showing 1 to 15 of 572
Spatial distribution of δ180 in meteoric precipitation, , Bowen G. J. , Wilkinson B.

Copepod distribution as an indicator of epikarst system connectivity, , Tanja Pipan, David C. Culver,

Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries, 0000, Baumgartner Lk, Reid Rp, Dupraz C, Decho Aw, Buckley Dh, Spear Jr, Przekop Km, Visscher Pt,
Sulfate reducing bacteria (SRB) have existed throughout much of Earth's history and remain major contributors to carbon cycling in modern systems. Despite their importance, misconceptions about SRB are prevalent. In particular, SRB are commonly thought to lack oxygen tolerance and to exist only in anoxic environments. Through the last two decades, researchers have discovered that SRB can, in fact, tolerate and even respire oxygen. Investigations of microbial mat systems have demonstrated that SRB are both abundant and active in the oxic zones of mats. Additionally, SRB have been found to be highly active in the lithified zones of microbial mats, suggesting a connection between sulfate reduction and mat lithification. In the present paper, we review recent research on SRB distribution and present new preliminary findings on both the diversity and distribution of [delta]-proteobacterial SRB in lithifying and non-lithifying microbial mat systems. These preliminary findings indicate the unexplored diversity of SRB in a microbial mat system and demonstrate the close microspatial association of SRB and cyanobacteria in the oxic zone of the mat. Possible mechanisms and further studies to elucidate mechanisms for carbonate precipitation via sulfate reduction are also discussed

Annotated Checklist of the Macroscopic Troglobites of Virginia with Notes on Their Geographic Distribution, 1963, Holsinger, John R.

Antrolana lira, a new genus and species of troglobitic cirolanid isopod from Madison cave, Virginia., 1964, Bowman Thomas E.
Antrolana lira, a new genus and species of troglobitic cirolanid isopod, is descnibed from Madison Cave, in the Appalachian Valley of Virginia. The problem of its origin from a marine ancestor is discussed. A supplementary description is given of Cirolanides texensis, and records of its occurrence are given. A key is given to the troglobitic Cirolanidae of the Western Hemisphere, and their known distribution is shown on a map. The subgenus Speocirolana Bolivar y Pieltain is raised to genus.

The birth of Biospeleology., 1964, Motas Constantin
Modern biospeleology dates from May 15, 1907, with the publication of Racovitza's "Essai sur les problmes biospologiques." In this paper he posed; if he did not answer; every question raised by life in the subterranean world. He outlined a program of biospeological research, made an analysis of the conditions of existence in the subterranean domain and their influence upon cavernicoles, discussed the evolution of subterranean biota, their geographical distribution, etc. Racovitza modified Schiner's (1854) classification, dividing cavernicoles into troglobites, troglophiles and trogloxenes, terms later adopted by a great number of biospeologists. The "Essai", called "Racovitza's famous manifest" by Vandel, was considered the birth certificate of biospeology by Antipa (1927) and by Jeannel (1948), its fundamental statute. Jeannel also made major contributions to the young science through his extensive and detailed studies. The names of Racovitza and Jeannel will always be linked as the uncontested masters of biospeology, the founders of Biospeologica, and the authors of Enumration des grottes visites. Apart from Schiner, whose ecological classification of cavernicoles was utilized and modified by Racovitza, they had another forerunner in Vir, a passionate speleologist who often accompanied Martel in his subterranean explorations, once meeting with a serious accident in which he was on the brink of death. Vir (1897, 1899) studied subterranean faunas, establishing the world's first underground laboratory, where he carried on unsuccessful or ill-interpreted experiments. We consider Racovitza and Jeannel's criticism of him too severe. Let us be more lenient with our forerunners, since their mistakes have also contributed to the progress of science, as well as exempting us from repeating them.

The Eastern Monolistrinae (Crustacea, Isopoda): I. Systematics., 1964, Sket Boris
The author gives a diagnosis for all eastern Monoslistrinae known today, grouping them in the genus Monolistra and dealing with their geographical distribution. He also gives incomplete descriptions of some forms and also describes the new subgenus Monolistrella for M. velkovrhi Sket, the new species M. (Typhlosphaeroma) matjasici and M. (Microlistra) pretneri and the new subspecies M. (Monolistra) caeca intermedia, M. (Typhlosphaeroma) racovitzai pseudoberica and M. (Typhlosphaeroma) racovitzai conopyge.

The cave dwelling bats of Switzerland., 1965, Aellen Villy
Bats, familiar to speleologists, play an important part in animal ecology in caves. Indirectly by their guano, they provide a source of food for numerous cave-dwelling animals and directly, by their own more or less constant presence. 26 species of bats are known from Switzerland, 15 of which occur in caves. Miniopterus schreibersi is considered the only true cave-dweller. The exact distribution of the rare species, including those occurring outside caves, is found in the text and is also indicated on the accompanying maps.

Present-Day Cave Beetle Fauna in Australia A Pointer to Past Climatic Change, 1965, Moore, B. P.

Beetles form an important element of life in caves, where they provide some of the most spectacular examples of adaptation to the environment. The troglobic forms are of greatest interest from the zoogeographical point of view and their present distributions, which are largely limited to the temperate regions of the world, appear to have been determined by the glaciations and later climatic changes of the Quaternary. Troglophiles, which are much more widespread, show little adaptation and are almost certainly recently evolved cavernicoles.


Caves of the Coastal Areas of South Australia, 1965, Sexton, R. T.

The majority of South Australian caves occur in the Tertiary and Quaternary limestones of the coastal areas. Their distribution is discussed here on a geological rather than a geographical basis. The most significant caves are briefly described and illustrated to indicate different types and related developments in the coastal limestones. The most notable feature of the limestones is their soft, porous nature. Caves also occur in South Australia in hard, massively bedded Cambrian and Pre-Cambrian limestones and dolomites. These are not discussed in the present paper. To facilitate recording, South Australia has been divided into six zones as shown in Figure 1, and the caves numbered in order of discovery in each area. In general, both the name and the number of the cave have been given, but unnamed caves are specified by number only. The cave maps have been chosen to give as wide a coverage as possible of the various types, or to illustrate points of particular interest. The arrows on the section lines show the direction of viewing, and the sections are numbered to relate them to the plans. Where a cross-section and longitudinal section intersect, the common line has been drawn to relate the sections. The same scale has been used throughout for ease of comparison.


The geographical distribution of Australian cave dwelling Chiroptera., 1966, Hamiltonsmith E.
Of the 56 species of bats currently recorded from Australia, 22 are known to occur in caves. The geographical distribution of each of these species is detailed, and from this data, the species are divided into four groups according to their pattern of distribution. Group I comprises those species found only North of 18S latitude, all of which either also occur in New Guinea or are closely related to New Guinea species. Group II, including both endemic Australian genera, occurs over that area North of 28S latitude. This area largely comprises desert or semi-desert terrain, with its characteristics of low humidity and a wide range between extremes of temperature. Group III occurs in the Eastern Coastal Region, with one species extending to a limited degree along both Northern and Southern Coasts. Although temperature is extremely varied over this range, there are common environmental factors of moderate to high humidity and a moderate to low range of temperature variation. Group IV species are all widespread, in many cases over the whole continent, are all members of the Vespertilionidae, and occur in caves only occasionally or only in certain parts of their range. These species are more commonly found in trees or buildings. The possible factors contributing to the origin of these distributional patterns are discussed, and some areas for future investigation suggested.

Algae from the cave of Matyas Mount, Budapest, Hungary., 1966, Palik P.
Seven collections containing scrapings of speleoclay or samples from the cave waters were received from L. Hajdu and were cultured in light in a modified Knop's solution. The cultures yielded 21 different algal taxa, of which five species belong to the Cyanophyta four to the Bacillariophycaea class of the Chrysophyta and twelve to the Chlorophyta. From the species distribution the cave shows a similarity to the nearby cave of Plvolgy, namely both of them contained more than 50 per cent Chlorophyta. Among the Cyanophyta the occurrence of Baradlaia speluncaecola Palik is noteworthy. This species seems to be a true troglobitic alga, since the genus is known only from caves.

The Distribution of the Hypogean Amphipoda in Britain, 1967, Glennie E. A.

Geographic distribution and validity of the troglobe species Asellus lusitanicus Frade (Asellote Crustacean)., 1967, Magniez Guy.
The troglobitic Asellid Asellus lusitanicus Frade (1938) is now known from three caves of the Serra de Aire (Central Portugal). It seems to be a good eyeless species of the "coxalis" group.

Cockroaches (Blattodea) From Australian Caves, 1967, Richards, Aola M.

Ten species of Australian cockroaches are recorded from Australian caves and mines. Most are troglophiles or guanobia. Only one troglobitic species is known. The distribution of these species is given, and attention is drawn to their absence from south-eastern Australia and Tasmania. It is suggested that climatic changes in the Pleistocene and early Recent may have been responsible for this, and that the fauna found in many cave areas may be of comparatively recent origin.


Results 1 to 15 of 572
You probably didn't submit anything to search for