Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That rebelay is the reanchoring of a rope, usually to avoid rub points or split long pitches.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dolomite formation (Keyword) returned 9 results for the whole karstbase:
SEDIMENT-HOSTED GOLD MINERALIZATION IN THE RATATOTOK DISTRICT, NORTH SULAWESI, INDONESIA, 1994, Turner S. J. , Flindell P. A. , Hendri D. , Hardjana I. , Lauricella P. F. , Lindsay R. P. , Marpaung B. , White G. P. ,
The Ratatotok district in the Minahasa Regency of North Sulawesi, Indonesia is an area of significant gold mineralisation. Gold has been mined in the district since at least the 1850s, and intensively by the Dutch between 1900 and 1921 with a recorded production of 5,060 kg of gold. Newmont began exploring the district in 1986, and has delineated a major sediment-hosted replacement-style deposit at Mesel, and other smaller deposits in an 8 X 5 km area. A total drill-indicated resource of over 60 metric tonnes of gold ( 2 Moz) is reported for Mesel, and three of the smaller deposits. Approximately 80% of this resource is refractory. Silver grades are usually low (< 10 g/t). The Mesel deposit is similar to many Carlin-type deposits in carbonate hostrocks, alteration, geochemical signature and ore mineralogy, but is distinct in tectonic setting. The discovery of replacement-style mineralisation at Mesel, in an impure limestone within a Tertiary island arc environment, demonstrates that deposits with outward characteristics similar to Carlin-type mineralisation are not restricted to a continental setting. Carbonate sediments in the Ratatotok district were deposited in a Late Miocene restricted basin. Later compressional tectonics caused uplift that resulted in karst development in the limestone and erosion of the adjacent volcanic arc with deposition of a thick epiclastic unit. This was followed by intrusion of shallow level pre-mineral andesite into the sequence. Mineralisation at Mesel, and probably elsewhere in the district, is synchronous with the late-stage reactivation of strike-slip faults. Mineralising fluids at Mesel were focussed along steep structures sympathetic to these faults, and trapped below a relatively impermeable andesite cap rock. Hydrothermal fluids caused decalcification of the silty, more permeable carbonate units with the formation of secondary dolomite, deposition of fine arsenian pyrite, silica veinlets and gold. Volume loss due to decalcification and dolomite formation caused collapse brecciation which enhanced fluid flow and further mineralisation. This locally culminated in total decarbonation and deposition of massive silica. Late-stage stibnite occurs in structural zones within the ore deposit, whereas arsenic (as realgar and orpiment) and mercury (as cinnabar) are concentrated on the periphery. Elsewhere in the Ratatotok district, gold mineralisation is restricted to replacement-style mineralisation in permeable zones along limestone-andesite contacts, open-space-filling quartz-calcite veins and stockworks, and residual quartz-clay breccias. The residual breccias are developed in-situ, and are interpreted to form by dissolution of the wallrock limestone from around pre-existing mineralisation. This has resulted in widespread eluvial gold occurrences

Dedolomitization as a driving mechanism for karst generation in Permian Blaine formation, southwestern Oklahoma, USA, 1997, Raines M. A. , Dewers T. A. ,
Cyclic deposits of Permian shales, dolomites, and halite and gypsum-bearing strata in the Blaine Formation of Southwestern Oklahoma contain abundant karst features. The present study shows that an important mechanism of karst development in these sequences is dedolomitization, wherein gypsum and dolomite in close spatial proximity dissolve and supersaturate groundwaters with respect to calcite. The net loss of mass accompanying this process (dolomite and gypsum dissolution minus calcite precipitation) can be manifest in secondary porosity development while the coupled nature of this set of reactions results in the retention of undersaturated conditions of groundwater with respect to gypsum. The continued disequilibrium generates karst voids in gypsum-bearing aquifers, a mineral-water system that would otherwise rapidly equilibrate. Geochemical modeling (using the code PHRQPITZ, Plummer et al 1988) of groundwater chemical data from Southwestern Oklahoma from the 1950's up to the present suggests that dedolomitization has occurred throughout this time period in evaporite sequences in Southwestern Oklahoma. Reports from groundwater well logs in the region of vein calcite suggest secondary precipitation, an observation in accord with dedolomite formation In terms of the amounts of void space produced by dissolution, dedolomitization can dominate gypsum dissolution alone, especially in periods of quiescent aquifer recharge when gypsum-water systems would have otherwise equilibrated and karst development ceased. Mass balance modeling plus molar volume considerations show that for every cubic cm of original rock (dolomite plus gypsum), there is 0.54 cm(3) of calcite and 0.47 cm(3) of void space produced Only slightly more pore space results if the dedolomitization reaction proceeds by psuedomorphic replacement of dolomite by calcite than in a reaction mechanism based on conservation of bicarbonate

Processes controlling colloid composition in a fractured and karstic aquifer in eastern Tennessee, USA, 1998, Mccarthy J. F. , Shevenell L. ,
Groundwater was sampled from a number of wells along recharge pathways between fractured shale and karstic formations to evaluate the chemical and hydrologic mechanisms controlling the nature and abundance of groundwater colloids. The colloids recovered using low flow rate purging and sampling exhibited a composition and abundance consistent with lithology, flow paths, and effects of hydrology and aqueous chemistry on colloid mobilization and stability. In general, the larger-size colloids and Ca-containing colloids were more abundant in the karstic lithologies, while Na-containing colloids were more important in the shales. The composition of the colloids reflected recharge pathways from the fractured shale and dolomite formations on the ridges into the limestone in the valley floor. The Mg-colloids in the limestone reflect the possible contributions from the dolomite, while the Na, K, and Si reflect possible contributions from the shale, However, it was not possible to use the colloid composition as a signature to demonstrate colloid transport from one lithology to another. Mixing of recharge water from the shale with groundwater within the limestone formation and precipitation/dissolution reactions could account for the colloids present in the limestone without invoking transport of specific shale-derived colloids into the limestone formation. The abundance of colloids in groundwater appears to be controlled by both chemical factors affecting colloid stability, as well as physical factors related to hydrology (storm-driven recharge and water velocities). In general, colloids were more abundant in wells with low ionic strength, such as shallow wells in water table aquifers near sources of recharge at the top of the ridges, Increases in cation concentrations due to dissolution reactions along Bow paths were associated with decreases in colloid abundance. However, in spite of elevated ionic strength, colloid concentrations tended to be unexpectedly high in karstic wells that were completed in cavities or water-bearing fractures. The higher levels of colloids appear to be related to storm-driven changes in chemistry or flow rates that causes resuspension of colloids settled within cavities and fractures. Published by Elsevier Science B.V

Formation of dolomite mottling in Middle Triassic ramp carbonates (Southern Hungary), 2000, Torok A. ,
The Middle Triassic carbonates of the Villany Mountains were deposited on a homoclinal carbonate ramp. Many of the carbonates from the 700 m-thick sequence show partial or complete dolomitization. The present paper describes dolomites that occur in a limestone unit as irregular mottles and as pore- and fracture-filling cements. Replacement-type scattered dolomite rhombs in the mottles having inclusion-rich, very dull luminescent cores and limpid non-luminescent outer zones represent the initial phase of dolomitization. The isotopic composition of these dolomites (delta(13)C = .30 parts per thousand VPDB, delta(18)O = -3.60 parts per thousand VPDB) is similar to that of the calcitic micrite (delta(13)C = .6 parts per thousand VPDB, delta(18)O = -4.00 parts per thousand VPDB) indicating that no external fluids were introduced during dolomite formation. The elevated Sr content of the micrites implies that sediment was originally aragonite or high-Mg calcite. Dolomitization took place in the burial realm from a 'marine' pore-fluid in a partly closed system. Later fracture-related saddle dolomite reflects elevated formation temperatures and increasing burial. Five calcites were identified. Multiple generations of calcite-filled fractures were formed during burial diagenesis generally having dull or no luminescence (delta(13)C = .80 parts per thousand VPDB, delta(18)O = -6.40 parts per thousand VPDB). The latest phase calcites are related to karst formation, having a very negative isotopic composition (delta(13)C = -5.0 to -7.2 parts per thousand VPDB and delta(18)O approximate to -7.44 parts per thousand VPDB). The karst-related processes include dissolution, calcite precipitation and partial replacement of dolomites by complex zoned bright yellow calcite. The timing of dolomitization is uncertain, but the first phase took place in a partly closed system prior to stylolite formation. Late-stage saddle dolomites were precipitated during maximum burial in the Cretaceous. The dissolution of dolomites and karst-related calcite replacement was not earlier than Late Cretaceous. (C) 2000 Elsevier Science B.V. All rights reserved

Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain, 2003, Velasco Francisco, Herrero Jose Miguel, Yusta Inaki, Alonso Jose Antonio, Seebold Ignacio, Leach David,
The Reocin Zn-Pb deposit, 30 km southwest of Santander, Spain, occurs within Lower Cretaceous dolomitized Urgonian limestones on the southern flank of the Santillana syncline. The Reocin deposit is one of the largest known strata-bound, carbonate-hosted, zinc-lead deposits in Europe. The total metal endowment of the deposit, including past production and remaining reserves, is 62 Mt of ore grading 8.7 percent Zn and 1.0 percent Pb. The epigenetic mineralization consists of sphalerite and galena, with lesser marcasite and trace pyrite with dolomite as gangue. Microprobe analyses of different generations of dolomite revealed nonstoichiometric compositions with various amounts of iron (up to 14 mol % of FeCO3). Replacement of host dolomite, open-space filling of fractures, and cementation of breccias derived from dissolution collapse are the principal types of ore occurrence. Detailed cross-section mapping indicates a stratigraphic and structural control on the deposit. A stratiform morphology is present in the western part of the orebody (Capa Sur), whereas mineralization in the eastern part is highly discordant but strata bound (Barrendera). Stratigraphic studies demonstrate that synsedimentary tectonic activity, related to the rifting of the North Atlantic (Bay of Biscay), was responsible for variation in sedimentation, presence of unconformities (including paleokarsts), local platform emergence and dolomitization along the N60 fault trend. In the Reocin area, two stages of dolomitization are recognized. The first stage is a pervasive dolomitization of the limestone country rocks that was controlled by faulting and locally affected the upper part of the Aptian and the complete Albian sequence. The second dolomitization event occurred after erosion and was controlled by karstic cavities. This later dolomitization was accompanied by ore deposition and, locally, filling of dolomite sands and clastic sediments in karstic cavities. The circulation of hydrothermal fluids responsible for sulfide deposition and the infilling of karst cavities were broadly contemporaneous, indicating a post-Albian age. Vitrinite reflectance data are consistent with previously measured fluid inclusion temperatures and indicate temperatures of ore deposition that were less than 100{degrees}C. Carbon and oxygen isotopic data from samples of regional limestone, host-rock dolostone and ore-stage dolomite suggest an early hydrothermal alteration of limestone to dolostone. This initial dolomitization was followed by a second period of dolomite formation produced by the mixing of basinal metal-rich fluids with local modified seawater. Both dolomitization events occurred under similar conditions from fluids exhibiting characteristics of basinal brines. The{delta} 34S values of sulfides are between -1.8 and .5 per mil, which is consistent with thermochemical sulfate reduction involving organic matter as the main source of reduced sulfur. Galena lead isotope compositions are among the most radiogenic values reported for Zn-Pb occurrences in Europe, and they are distinct from values reported for galena from other Basque-Cantabrian deposits. This suggests that a significant part of the lead was scavenged from the local underlying Asturian sediments. The stratigraphic and structural setting, timing of epigenetic mineralization, mineralogy, and isotopic geochemistry of sulfide and gangue minerals of the Reocin deposit are consistent with the features of most of Mississippi Valley-type ore deposits

Concepts and models of dolomitization: a critical reappraisal, 2004, Machel Hans G. ,
Despite intensive research over more than 200 years, the origin of dolomite, the mineral and the rock, remains subject to considerable controversy. This is partly because some of the chemical and/or hydrological conditions of dolomite formation are poorly understood, and because petrographic and geochemical data commonly permit more than one genetic interpretation. This paper is a summary and critical appraisal of the state of the art in dolomite research, highlighting its major advances and controversies, especially over the last 20-25 years. The thermodynamic conditions of dolomite formation have been known quite well since the 1970s, and the latest experimental studies essentially confirm earlier results. The kinetics of dolomite formation are still relatively poorly understood, however. The role of sulphate as an inhibitor to dolomite formation has been overrated. Sulphate appears to be an inhibitor only in relatively low-sulphate aqueous solutions, and probably only indirectly. In sulphate-rich solutions it may actually promote dolomite formation. Mass-balance calculations show that large water/rock ratios are required for extensive dolomitization and the formation of massive dolostones. This constraint necessitates advection, which is why all models for the genesis of massive dolostones are essentially hydrological models. The exceptions are environments where carbonate muds or limestones can be dolomitized via diffusion of magnesium from seawater rather than by advection. Replacement of shallow-water limestones, the most common form of dolomitization, results in a series of distinctive textures that form in a sequential manner with progressive degrees of dolomitization, i.e. matrix-selective replacement, overdolomitization, formation of vugs and moulds, emplacement of up to 20 vol% calcium sulphate in the case of seawater dolomitization, formation of two dolomite populations, and -- in the case of advanced burial -- formation of saddle dolomite. In addition, dolomite dissolution, including karstification, is to be expected in cases of influx of formation waters that are dilute, acidic, or both. Many dolostones, especially at greater depths, have higher porosities than limestones, and this may be the result of several processes, i.e. mole-per-mole replacement, dissolution of unreplaced calcite as part of the dolomitization process, dissolution of dolomite due to acidification of the pore waters, fluid mixing (mischungskorrosion), and thermochemical sulphate reduction. There also are several processes that destroy porosity, most commonly dolomite and calcium sulphate cementation. These processes vary in importance from place to place. For this reason, generalizations about the porosity and permeability development of dolostones are difficult, and these parameters have to be investigated on a case-by-case basis. A wide range of geochemical methods may be used to characterize dolomites and dolostones, and to decipher their origin. The most widely used methods are the analysis and interpretation of stable isotopes (O, C), Sr isotopes, trace elements, and fluid inclusions. Under favourable circumstances some of these parameters can be used to determine the direction of fluid flow during dolomitization. The extent of recrystallization in dolomites and dolostones is much disputed, yet extremely important for geochemical interpretations. Dolomites that originally form very close to the surface and from evaporitic brines tend to recrystallize with time and during burial. Those dolomites that originally form at several hundred to a few thousand metres depth commonly show little or no evidence of recrystallization. Traditionally, dolomitization models in near-surface and shallow diagenetic settings are defined and/or based on water chemistry, but on hydrology in burial diagenetic settings. In this paper, however, the various dolomite models are placed into appropriate diagenetic settings. Penecontemporaneous dolomites form almost syndepositionally as a normal consequence of the geochemical conditions prevailing in the environment of deposition. There are many such settings, and most commonly they form only a few per cent of microcrystalline dolomite(s). Many, if not most, penecontemporaneous dolomites appear to have formed through the mediation of microbes. Virtually all volumetrically large, replacive dolostone bodies are post-depositional and formed during some degree of burial. The viability of the many models for dolomitization in such settings is variable. Massive dolomitization by freshwater-seawater mixing is a myth. Mixing zones tend to form caves without or, at best, with very small amounts of dolomite. The role of coastal mixing zones with respect to dolomitization may be that of a hydrological pump for seawater dolomitization. Reflux dolomitization, most commonly by mesohaline brines that originated from seawater evaporation, is capable of pervasively dolomitizing entire carbonate platforms. However, the extent of dolomitization varies strongly with the extent and duration of evaporation and flooding, and with the subsurface permeability distribution. Complete dolomitization of carbonate platforms appears possible only under favourable circumstances. Similarly, thermal convection in open half-cells (Kohout convection), most commonly by seawater or slightly modified seawater, can form massive dolostones under favourable circumstances, whereas thermal convection in closed cells cannot. Compaction flow cannot form massive dolostones, unless it is funnelled, which may be more common than generally recognized. Neither topography driven flow nor tectonically induced ( squeegee-type') flow is likely to form massive dolostones, except under unusual circumstances. Hydrothermal dolomitization may occur in a variety of subsurface diagenetic settings, but has been significantly overrated. It commonly forms massive dolostones that are localized around faults, but regional or basin-wide dolomitization is not hydrothermal. The regionally extensive dolostones of the Bahamas (Cenozoic), western Canada and Ireland (Palaeozoic), and Israel (Mesozoic) probably formed from seawater that was pumped' through these sequences by thermal convection, reflux, funnelled compaction, or a combination thereof. For such platform settings flushed with seawater, geochemical data and numerical modelling suggest that most dolomites form(ed) at temperatures around 50-80 {degrees}C commensurate with depths of 500 to a maximum of 2000 m. The resulting dolostones can be classified both as seawater dolomites and as burial dolomites. This ambiguity is a consequence of the historical evolution of dolomite research

Dolomite formation in breccias at the Musandam Platform border, Northern Oman Mountains, United Arab Emirates, 2006, Breesch L, Swennen R, Vincent B,
The presence of dolomite breccia patches along Wadi Batha Mahani suggests large-scale fluid flow causing dolomite formation. The controls on dolomitization have been studied, using petrography and geochemistry. Dolomitization was mainly controlled by brecciation and the nearby Hagab thrust. Breccias formed as subaerial scree deposits, with clay infill from dissolved platform limestones, during Early Cretaceous emergence. Cathodoluminescence of the dolostones indicates dolomitization took place in two phases. First, fine-crystalline planar-s dolomite replaced the breccias. Later, these dolomites were recrystallized by larger nonplanar dolomites. The stable isotope trend towards depleted values (delta O-18: -2.7 parts per thousand to - 10.2 parts per thousand VPDB and delta C-13: -0.6 parts per thousand to -8.9 parts per thousand VPDB), caused by mixing dolomite types during sampling, indicates type 2 dolomites were formed by hot fluids. Microthermometry of quartz cements and karst veins, post-dating dolomites, also yielded high temperatures. Hot formation waters which ascended along the Hagab thrust are invoked to explain type 2 dolomitization, silicification and hydrothermal karstification. (C) 2006 Elsevier B.V, All rights reserved

Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada , 2006, Lonnee J. , Machel H. G.

The Clarke Lake gas field in British Columbia, Canada, is hosted in pervasively dolomitized Middle Devonian carbonates of the Slave Point Formation. The Clarke Lake field consists mostly of pervasive matrix dolomite and some saddle dolomite, the latter varying in volume from about zero in limestones to normally 20–40% (locally up to 80%) in dolostones over any given 10-m (33-ft) core interval. Some of the saddle dolomite is replacive, some is cement, and both varieties are associated with dissolution porosity and recrystallized matrix dolomite. The major objective of this study is to identify the causes and timing of matrix and saddle dolomite formation, specifically, whether these dolomites are hydrothermal. A comprehensive petrographic and geochemical examination indicates that pervasive matrix dolomitization was accomplished by long-distance migration of halite-saturated brines during the Late Devonian toMississippian. Fluid-inclusion homogenization temperatures suggest about 150 (uncorrected) to 190jC (corrected) at the time of matrix dolomitization. These temperatures differ markedly from most published work on the dolomitized Devonian reefs in the Alberta Basin south of the Peace River arch, where pervasive matrix dolomitization was accomplished by advection of slightly modified seawater at temperatures of about 60–80jC, and where no hydrothermal influence was ever present. The saddle dolomites at Clarke Lake are not cogenetic with matrix dolomite and are not the product of hydrothermal dolomitization (sensu stricto). Instead, they formed through the hydrothermal alteration of matrix dolomite by way of invasion of a gypsum-saturated brine during periods of extremely high heat flow and regional plate-margin tectonics in the Late Devonian to Mississippian. Fluidinclusion homogenization temperatures suggest that hydrothermal alteration occurred between 230 (uncorrected) and 267jC (corrected), which is significantly higher than the maximumtemperature of about 190jC attained by the Slave Point Formation during burial. The sources of the halite- and gypsum-saturated brines are Middle Devonian evaporite depositional environments roughly 200 km (124 mi) south and/or east of Clarke Lake, near the Peace River arch

Carbonate Stimulation, 2007, Davies S. , Kelkar S.

Carbonate sequences, those comprising limestone and dolomite formations, present some of the most difficult challenges facing field operators. Carbonate reservoirs often have large and highly variable completion intervals, which can greatly complicate stimulation and production operations. In many cases, these reservoirs exhibit marked vertical and lateral heterogeneity caused by permeability barriers, natural fractures, and complex porosity distributions. These variations can be particularly bewildering for engineers who are trying to devise effective workover and stimulation strategies.
In this article, Steven Davies and Shrihari Kelkar examine the techniques and technologies that field operators can use to stimulate carbonate reservoirs.

Results 1 to 9 of 9
You probably didn't submit anything to search for