Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That effective size is the 90%-retained size of a sediment as determined from a grain-size analysis; therefore, 10% of the sediment is finer and 90% coarser [6].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ferromanganese (Keyword) returned 9 results for the whole karstbase:
Presence of Rare-Earth Elements in Black Ferromanganese Coatings from V?ntului Cave (Romania), 1997, Onac, B. P. , Pedersen, R. B. , Tysseland, M.
This study examines the rare-earth elements (REEs) found in ferromanganese coatings covering both sandy alluvium and submerged boulders in an underground stream from V?ntului Cave, Romania. The black ferromanganese sediments are mainly composed of birnessite and other poorly-crystallized manganese oxide and hydroxides (pyrolusite, romanechite, todorokite, rhodochrosite) as well as goethite and kaolinite. Scanning electron microscope and EDX analyses performed on the black ferromanganese sediments show the material to have concentrated considerable amounts of REEs (La, Ce, Sm, Nd) in iron-rich spheres that build up botryoidal-like aggregates. The correlation of 143Nd/144Nd ratio for 6 different samples indicates that the REEs were concentrated in the cave environment after being leached from bauxitic and red residual clays from above the cave. Based on our observations, we conclude that an increase in pH resulted in adsorption of REE onto the surface of ferromanganese minerals. This study demonstrates the potential of using Nd isotopes as a tool for paleochemistry studies of the cave environment.

Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves, 2003, Northup D. E. , Barns S. M. , Yu L. E. , Spilde M. N. , Schelble R. T. , Dano K. E. , Crossey L. J. , Connolly C. A. , Boston P. J. , Natvig D. O. , Dahm C. N. ,
Lechuguilla Cave is an ancient, deep, oligotrophic subterranean environment that contains an abundance of low-density ferromanganese deposits, the origin of which is uncertain. To assess the possibility that biotic factors may be involved in the production of these deposits and to investigate the nature of the microbial community in these materials, we carried out culture-independent, small subunit ribosomal RNA (SSU rRNA) sequence-based studies from two sites and from manganese and iron enrichment cultures inoculated with ferromanganese deposits from Lechuguilla and Spider Caves. Sequence analysis showed the presence of some organisms whose closest relatives are known iron- and manganese-oxidizing/reducing bacteria, including Hyphomicrobium, Pedomicrobium, Leptospirillum, Stenotrophomonas and Pantoea. The dominant clone types in one site grouped with mesophilic Archaea in both the Crenarchaeota and Euryarchaeota. The second site was dominated almost entirely by lactobacilli. Other clone sequences were most closely related to those of nitrite-oxidizing bacteria, nitrogen-fixing bacteria, actinomycetes and beta- and gamma-Proteobacteria. Geochemical analyses showed a fourfold enrichment of oxidized iron and manganese from bedrock to darkest ferromanganese deposits. These data support our hypothesis that microorganisms may contribute to the formation of manganese and iron oxide-rich deposits and a diverse microbial community is present in these unusual secondary mineral formations

Geomicrobiology of cave ferromanganese deposits: A field and laboratory investigation, 2005, Spilde M. N. , Northup D. E. , Boston P. J. , Schelble R. T. , Dano K. E. , Crossey L. J. , Dahm C. N. ,
Unusual ferromanganese deposits are found in several caves in New Mexico. The deposits are enriched in iron and manganese by as much as three orders of magnitude over the bedrock, differing significantly in mineralogy and chemistry from bedrock-derived insoluble residue. The deposits contain metabolically active microbial communities. Enrichment cultures inoculated from the ferromanganese deposits produced manganese oxides that were initially amorphous but developed into crystalline minerals over an 8-month period and beyond; no such progression occurred in killed controls. Phylogenetic analyses of sequences from clone libraries constructed from culture DNA identified two genera known to oxidize manganese, but most clones represent previously unknown manganese oxidizers. We suggest that this community is breaking down the bedrock and accumulating iron and manganese oxides in an oligotrophic environment

Ferromanganese deposits in the caves of the Guadalupe Mountains, 2006, Spilde M. N. , Northup D. E. , Boston P. J

Hazel A. Barton and Diana E. Northup, 2007, Barton Hazel A. And Northup Diana E.
The Karst Waters Institute Breakthroughs in Karst Geomicrobiology and Redox Geochemistry conference in 1994 was a watershed event in the history of cave geomicrobiology studies within the US. Since that time, studies of cave geomicrobiology have accelerated in number, complexity of techniques used, and depth of the results obtained. The field has moved from being sparse and largely descriptive in nature, to rich in experimental studies yielding fresh insights into the nature of microbe-mineral interactions in caves. To provide insight into the changing nature of cave geomicrobiology we have divided our review into research occurring before and after the Breakthroughs conference, and concentrated on secondary cave deposits: sulfur (sulfidic systems), iron and manganese (ferromanganese, a.k.a. corrosion residue deposits), nitrate (a.k.a. saltpeter), and carbonate compounds (speleothems and moonmilk deposits). The debate concerning the origin of saltpeter remains unresolved; progress has been made on identifying the roles of bacteria in sulfur cave ecosystems, including cavern enlargement through biogenic sulfuric acid; new evidence provides a model for the action of bacteria in forming some moonmilk deposits; combined geochemical and molecular phylogenetic studies suggest that some ferromanganese deposits are biogenic, the result of redox reactions; and evidence is accumulating that points to an active role for microorganisms in carbonate precipitation in speleothems.

Analysis on gushing water in complex karst mining areaA case in ferromanganese mine ? in Daoxian, Hunan province , 2010, Lin Zhongxiang, Chen Xianggui

Water gushing of mine is the most important issue in mining,and reasonable predicting method for gushing water is a hot and difficult problem in research circle at present.Ferromanganese mine?in Daoxian,Hunan is taken as the example.The water gushing of mine is simulated by means of finitedifference methods.The simulation results shows that the gushing water mainly comes from the Chezijiang river but the water come from rainfall,the east,south and north boundary increase,which proving the gushing water is recharged widely.On the other hand,the lithology and geological structure as well as groundwater characteristics are investigated,the boundary conditions are determined,and the finite difference numerical methods are used to simulate the groundwater.The results show that,the numerical simulation can be used to forecast water gushing of mine in different conditions and different mining level as well as complex hydrogeologic conditions.In one word,the simulation results can be used as the basis for the design of mining


Boxwork and ferromanganese coatings in hypogenic caves: An example from Sima de la Higuera Cave (Murcia, SE Spain) , 2012, Gazquez Fernando, Calaforra Josemaria, Rull Fernando

This paper examines the greyish-blue deposits that were recently discovered in the lower levels of the Sima de la Higuera Cave (Murcia, SE Spain) which occur as patinas over the walls and ceilings, as well as coating boxwork formations. Their mineralogy was determined using XRD and micro-Raman spectroscopy, while EDX microanalysis was used to determine their elemental composition. The mineralogical analyses revealed the presence of Mn oxides (todorokite and pyrolusite) and Fe with a low degree of crystallinity, whereas EDX microprobe showed elevated concentrations of Mn (38.2 wt.%), Fe (15.2 wt.%) and Pb (8.1 wt.%). The ferromanganese oxyhydroxides occur as botryoidal aggregates overlying blades of calcite that have a visibly sugary texture. The speleogenetic model proposed describes (1) an initial phase of precipitation of hydrothermal calcite veins (of hypogenic origin) within the fissures of the host rock under phreatic conditions and (2) a subsequent vadose phase involving preferential corrosion of the carbonate host rock caused by lowering of the pH resulting from CO2 diffusion in condensed water and oxidation of Fe and Mn under aerobic conditions, probably mediated by microorganisms. It is this later phase that gave rise to the boxwork. The boxwork of the Sima de la Higuera Cave is a singular example of a formation that is generated by dissolution–corrosion of the rock due to acidification caused by oxidation of iron and manganese.


Boxwork and ferromanganese coatings in hypogenic caves: An example from Sima de la Higuera Cave (Murcia, SE Spain), 2012, Gazquez Fernando, Calaforra Josemaria, Rull Fernando

This paper examines the greyish-blue deposits that were recently discovered in the lower levels of the Sima de la Higuera Cave (Murcia, SE Spain) which occur as patinas over the walls and ceilings, as well as coating boxwork formations. Their mineralogy was determined using XRD and micro-Raman spectroscopy, while EDX microanalysis was used to determine their elemental composition. The mineralogical analyses revealed the presence of Mn oxides (todorokite and pyrolusite) and Fe with a low degree of crystallinity, whereas EDX microprobe showed elevated concentrations of Mn (38.2 wt.%), Fe (15.2 wt.%) and Pb (8.1 wt.%). The ferromanganese oxyhydroxides occur as botryoidal aggregates overlying blades of calcite that have a visibly sugary texture. The speleogenetic model proposed describes (1) an initial phase of precipitation of hydrothermal calcite veins (of hypogenic origin) within the fissures of the host rock under phreatic conditions and (2) a subsequent vadose phase involving preferential corrosion of the carbonate host rock caused by lowering of the pH resulting from CO2 diffusion in condensed water and oxidation of Fe and Mn under aerobic conditions, probably mediated by microorganisms. It is this later phase that gave rise to the boxwork. The boxwork of the Sima de la Higuera Cave is a singular example of a formation that is generated by dissolution–corrosion of the rock due to acidification caused by oxidation of iron and manganese.


Microbial communities in a coastal cave: Cova des Pas de Vallgornera (Mallorca, Western Mediterranean), 2014, Busquets A. , Fornós J. J. , Zafra F. , Lalucat J. , Merino A.

As a part of an ongoing project on the role of microbes in the biogeochemistry of Majorcan caves, the species diversity of microbial communities present in cave pools of anchialine waters in the Cova des Pas de Vallgornera (Mallorca, western Mediterranean) is investigated by a culture-dependent method. Two-hundred and forty-eight strains isolated from this characteristic cave environment of the littoral karst are identified by whole-cell-MALDI-TOF mass spectrometry and phylogeneticaly by 16S rRNA gene sequences. Total cell counts and species diversity of the bacterial communities decreas with the distance to the entrance of the cave and to the sea. Strains are mainly identified as members of the Gammaproteobacteria and Actinobacteria. Around 20% of the isolates are able to precipitate carbonates. Calcite is the predominant phase, growing in all the precipitates, although struvite is also found in one Pseudomonas and in one Aspergillus cultures. Differences in crystal characteristics of external shape (habit) and growth are observed according to the bacterial species promoting the precipitates. Bacteria associated with multicolored ferromanganese deposits, present in several parts of the cave, are also studied and are identified as Pseudomonas benzenivorans and Nocardioides luteus. The preponderance of Pseudomonas species and the possible contribution of bacteria in calcite deposition are discussed.


Results 1 to 9 of 9
You probably didn't submit anything to search for