Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That joint diagram is a diagram constructed by accurately plotting the strike and dip of joints to illustrate the geometrical relationship of the joints within a specified area of geologic investigation.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for flood events (Keyword) returned 22 results for the whole karstbase:
Showing 1 to 15 of 22
The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland, , Perrin J. , Jeannin P. Y. , Cornaton F. ,
SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence.Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge

Limestone Springs and Individual Flood Events, 1973, Chambers W. J.

Further Studies at the Blue Waterholes, Cooleman Plain, N.S.W., 1969-77, Part I, Climate and Hydrology, 1983, Jennings, J. N.

Previous study of the temporal and spatial distribution of limestone solution at Cooleman Plain rested on monthly discharges and water analyses of the Blue Waterholes over 4 years. For this study automatic recording of discharge (8 years), rainfall (8 years), evaporation (7 years) and temperature (4 years) was attended by variable success in the face of interference, rigorous climate and inaccessibility. The most important aspect of the climatic data was the support obtained for the earlier assumption of similar water balances in the forested igneous frame and the grassland limestone plain. Runoff was again shown to be highly variable from year to year and to have an oceanic pluvial regime, with a summer-autumn minimum owing much to evapo-transpiration. The flow duration curve from daily discharges puts this karst amongst those where neither extremely high nor low flows are important. The stream routing pattern offsets the effect of 71% of the catchment being on non-karst rocks, damping flood events. An inflection of 700 l/s in a flow duration plot based on discharge class means is interpreted as the threshold at which surface flow down North Branch reaches the Blue Waterholes. Storages calculated from a generalised recession hydrograph parallel Mendip data where baseflow (fissure) storage provides most of the storage and quickflow (vadose) storage only a secondary part. Water-filled conduit storage (the phreas) could not be determined but is considered small. The baseflow storage seems large, suggesting that it can develop independently of caves in some measure. A quickflow ratio for floods derived by Gunn's modification of the Hewlett and Hibbert separation line method appears relatively low for a mainly non-karst catchment and is again attributed to the routing pattern. For analysis of variation of the solute load over time, estimates of daily discharge during gaps in the record where made for the author by Dr. A.J. Jakeman and Mr. M.A. Greenaway (see Appendix). A small number of discharge measures of two contrasted allogenic catchments of the igneous frame shows a unit area yield close to that for the whole catchment. Together with the guaging of most of the allogenic inputs, this supports the idea that the water yield is much the same from the forested ranges and the grassland plain. This is important for the estimation of limestone removal rates.


Sedimentology and Paleomagnetism of Sediments, Kartchner Caverns, Arizona, 1999, Hill, C. A.
Clastic deposits in Kartchner Caverns consist of coarse deposits (breakdown, pebble gravel and micaceous sand) and fine-grained deposits (fault gouge and blocky clay). The coarse deposits are all related to the vadose history of the cave, while the fine-grained deposits are related to the phreatic history of the cave and, probably, to the beginning of vadose conditions. The illite clay in fault zones was possibly derived from the underlying Pinal Schist. The clay mineral rectorite is most likely a hydrothermal alteration of illite within the faults prior to the dissolution of the cave. The blocky clay unit is autochthonous sediment that was at least partially derived from residual fault gouge clay at the time of cave dissolution. The pebble gravels were deposited during different flood events in different parts of the cave, with a lateral fining of micaceous sand in back-wash areas. The blocky clay, pebble gravel, and micaceous sand are all paleomagnetically normal and date from the Brunhes/Matuyama normal (<~780 Ka). The clay mineral nontronite probably reconstituted from residual illite/rectorite under high pH, low Eh flood-water conditions within the cave environment

Inverse modeling of the hydrological and the hydrochemical behavior of hydrosystems: Characterization of karst system functioning, 2001, Pinault J. L. , Plagnes V. , Aquilina L. , Bakalowicz M. ,
Inverse modeling of mass transfer characterizes the dynamic processes affecting the function of karst systems and can be used to identify karst properties. An inverse model is proposed to calculate unit hydrographs as well as impulse response of fluxes from rainfall-runoff or rainfall-flux data, the purpose of which is hydrograph separation. Contrary to what hydrologists have been doing for years, hydrograph separation is carried out by using transfer functions in their entirety, which enables accurate separation of fluxes, as was explained in the companion paper [Pinault et al., this issue]. The unit hydrograph as well as impulse response of fluxes is decomposed into a quick and a slow component, and, consequently, the effective rainfall is decomposed into two parts, one contributing to the quick flow (or flux) and the other contributing to the slow flow generation. This approach is applied to seven French karstic aquifers located on the Larzac plateau in the Grands Causses area (in the south of France). Both hydrodynamical and hydrogeochemical data have been recorded from these springs over several hydrological cycles. For modeling purposes, karst properties can be represented by the impulse responses of flow and flux of dissolved species. The heterogeneity of aquifers is translated to time-modulated flow and transport at the outlet. Monitoring these fluxes enables the evaluation of slow and quick components in the hydrograph. The quick component refers to the 'flush flow' effect and results from fast infiltration in the karst conduit network when connection is established between the infiltration and phreatic zones, inducing an increase in water head. This component reflects flood events where flow behavior is nonlinear and is described by a very short transfer function, which increases and decreases according to water head. The slow component consists of slow and fast infiltration, underground runoff, storage in annex-to-drain systems, and discharge from the saturated zone. These components can be further subdivided by measuring chemical responses at the karst outlet. Using Such natural tracers enables the slow component of the unit hydrograph to be separated into preevent water, i.e., water of the reservoir and event water, i.e., water whose origin can be related to a particular rainfall event. These measurements can be used to determine the rate of water renewal. Since the preevent water hydrograph is produced by stored water when pushed by a rainfall event and the event water hydrograph reflects rainwater transfer, separating the two components can yield insights into the characteristics of karst aquifers, the modes of infiltration, and the mechanisms involved in karstification, as well as the degree of organization of the aquifer

Raw sewage and solid waste dumps in lava tube caves of Hawaii Island, 2003, Halliday, W. R.
Lava tubes on the island of Hawaii (and elsewhere) are possible subsurface point sources of contamination in addition to more readily identifiable sources on the surface. Human and animal waste, and hazardous and toxic substances dumped into lava tube caves are subject to rapid transport during flood events, which are the dominant type of groundwater flow through Hawaiian lava tubes. Although these waste materials may not be a major source of pollution when compared with some surface sources, this potential hazard should be evaluated much as in the case of karstic floodwater conduits.

Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland, 2003, Perrin K. , Jeannin P. Y. , Zwahlen F. ,
The Milandre test site is a karst aquifer characterized by diffuse infiltration, a well developed conduit network, and several tributaries feeding an underground river. Field data include discharge rate measurements, stable isotopes, weekly rainfall and spring-water isotope sampling, and detailed isotope sampling during three flood events. Flood sampling was carried out at several tributaries corresponding to conduit flow, vadose flow and seepage flow. Weekly sampling showed a strong buffering of the rainfall isotopic signal at the spring. This attenuation suggests an important mixing reservoir in the system. Flood events showed highly peaking hydraulic responses but buffered rain isotope responses. These results indicate that the soil and epikarst sub-systems have an important storage capacity. A conceptual model of flow and transport in the soil and epikarst zone is proposed: Soil plays an important role in mixing due to the presence of capillary water storage. Consequently dampened concentrations reach the epikarst despite a rapid hydraulic response. The epikarst acts as the storage element and distributes water as either a base flow component or a quick flow component. When recharge exceeds a given threshold, excess infiltrated water bypasses the soil and epikarst and reaches the saturated zone as fresh flow. Based on this model, the significance of phreatic storage is thought to be limited, at least in Milandre test site. Hence the saturated zone is seen mainly as a transmissive zone through its well developed conduit network. (C) 2003 Elsevier B.V. All rights reserved

A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers, 2003, Perrin, Jerome

Karst aquifers represent an important groundwater resource world-wide. They are highly vulnerable to contamination due to fast transport through the system and limited attenuation of contaminants. The two main hydrogeological approaches developed for studying flow and transport are: inference of the
system structure from karst spring hydrographs and chemographs; numerical modelling of flow and transport using a theoretical distribution of flow and transport field parameters. These two approaches lack of validation by detailed field measurements and observations. The main objective of this thesis is to “fill the gap” existing between field and model data. Observations of flow and transport parameters at several locations within the system were used to develop a conceptual model. This model was then compared to the existing models.
The main field test site is the Milandre karst aquifer, located in the Swiss tabular Jura. Natural tracers (major ions, oxygen-18, specific conductance) and discharge were measured on the underground river, its main tributaries, percolation waters, and the main spring. These data were collected on a long-term basis in order to assess the spatial variability of the parameters, and on a short time scale (i.e. flood events) in order to investigate the dynamic processes. Complementary sites (Brandt and Grand Bochat) were used for more observations at the base of the epikarst.
The proposed conceptual model considers four sub-systems: the soil zone, the epikarst, the unsaturated zone, and the phreatic zone. Each has its own specificity with respect to flow and transport. The soil zone controls the actual infiltration into the system. It contributes efficiently to groundwater storage. It mixes quickly stored water with fresh infiltrated water. Its thickness determines land-use: thick soils are generally cultivated whereas thin soils are under forested areas. The solutes concentration of soil waters depends on land-use for pollution-related parameters (nitrate, chloride, sulfate, potassium, sodium). Moreover the soil zone is the main source of CO2 which controls the limestone dissolution-related parameters. The epikarst zone contributes largely to groundwater storage. It distributes groundwater into vadose flow through conduits, and base flow through low permeability volumes (LPV) in the unsaturated zone. It is the sub-system where dissolution-related parameters are mostly acquired.
The unsaturated zone is seen as a transmissive zone connecting the epikarst to the horizontal conduit network of the phreatic zone. In case of flood events, some dissolution still occurs in this sub-system.
The phreatic zone is the partly flooded conduit network draining groundwater to the spring. It collects waters issued from the unsaturated zone, mixes the tributaries, and drain the water towards the discharge area. The role of phreatic storage appears to be limited for both hydraulics and transport.
Tributary mixing is a prominent process that shapes spring chemographs during flood events. In steady-state conditions, base flow is mainly sustained by the epikarst reservoir. Tracer concentrations are stable as the chemical equilibrium is already reached in the epikarst. Waters issued from the different tributaries mix in the conduit network, and the spring chemistry is the result of this mixing.
During flood events, transient flow induces non-linear mixing of the tributaries. The respective contributions of the tributaries change throughout the flood, and the spring chemographs vary accordingly. In case of important recharge, waters issued from other sources than the epikarst participate to the flood. First, soil water reaches the phreatic zone. Its characteristics are a dampened isotopic signal, and ionic concentrations differing from those of the epikarst. Second, fresh water directly issued from rainfall, may reach the phreatic zone. Its characteristics are a varying isotopic signal, and diluted ionic concentrations. The mixing components participating to the flood are controlled by the actual infiltration volume (or height). The limestone dissolution process is effective for the fresh and soil components of flow. However mixing processes play a more important role than dissolution for shaping the spring chemographs.
From a practical point of view, the project confirmed the prominent role of the soil zone and the epikarst on the solute transport in karst systems. This was already integrated in karst vulnerability mapping methods recently developed (EPIK, PI, VULK).

http://doc.rero.ch/record/2604/files/these_PerrinJ.pdf


Depositional and post-depositional history of warm stage deposits at Knocknacran, Co. Monaghan, Ireland: implications for preservation of Irish last interglacial deposits, 2004, Vaughan A. P. M. , Dowling L. A. , Mitchell F. J. G. , Lauritzen S. E. , Mccabe A. M. , Coxon P. ,
Organic-rich deposits, uncovered during overburden removal from mantled gypsum karst at Knocknacran opencast gypsum mine, Co. Monaghan, are the best candidate to date for a last interglacial record in Ireland. The two till and organic-rich deposits (preserved at different quarry elevations) were emplaced on to a Tertiary dolerite surface during high-energy flood events and subsequently folded and faulted by movement towards sinkholes in underlying gypsum. Uranium-thorium disequilibrium dating suggests that the organic-rich deposits in the upper section were hydrologically isolated at ca. 41 ka and those in the lower section at ca. 86 ka. Interpretation of the pollen content, although tentative because of the depositional and post-depositional history of the material, suggests that the organic material originated in a warm stage possibly warmer than the post-Eemian interstadials. The unusual setting of preservation may indicate that in situ, last interglacial deposits have generally been removed by erosion in Ireland.

Black Sea-Marmara Sea Quaternary connections: new data from the Bosphorus, Istanbul, Turkey, 2004, Kerey I. Erdal, Meric Engin, Tunoglu Cemal, Kelling Gilbert, Brenner Robert L. , Dogan A. Umran,
Previous studies concluded that the Bosphorus Strait was formed during the Quaternary by fluvial incision of a valley between the Black Sea, to the north, and the Marmara Sea in the south. Hitherto, however, few details of the evolution of this connection have been elucidated from the sediments deposited within the Bosphorus itself. We report here details of sedimentological and palaeontological evidence relating to this history, obtained from five boreholes drilled into the unconsolidated sediment fill in the north-central sector of the Bosphorus, together with nearby geophysical profiles. The Quaternary fill of this part of the Bosphorus comprises two major facies associations. Yellow arkosic sands dominate the lower Facies Association A: these are assigned a Middle to Late Pleistocene age and the contained faunas have a lagoonal to lacustrine character and a Black Sea provenance (Paratethyan affinities). The abruptly succeeding units of Facies Association B comprise fining and coarsening upwards units of coarse to fine shelly and clayey sands that alternate with shell-bearing green clays. These sediments were formed in a range of marine and coastal settings and biostratigraphic evidence and absolute dating demonstrate the Mid-Late Holocene age of this upper unit. Initially brackish faunal assemblages in this upper unit show an upward increase in marine and Mediterranean affinities. Integrating these new data with previously published observations from coeval deposits in the southern Bosphorus and Izmit Bay (NE Marmara Sea) we conclude that during the Late Pleistocene and Early Holocene a topographic barrier existed in the south-central sector of the Bosphorus, on both sides of which estuarine and lagoonal sediments accumulated, with distinctive Black Sea and Mediterranean faunas. During a significant rise in sea level, between 7000 and 5300 years ago, this barrier was finally submerged, permitting interchange of marine waters between the Mediterranean and the Black Sea and creating the present oceanographic situation. This evolution conflicts with the cataclysmic role of the Bosphorus in the early Holocene as postulated in the `Catastrophic Flood' hypothesis of Ryan et al. [Mar. Geol. 138 (1997) 119-126; Annu. Rev. Earth Planet. Sci. 31 (2003) 525-554]. It also contrasts with the history recorded from the Gulf of Izmit, where intermittent connection between these two bodies of water throughout much of the Quaternary is evident

Geomorphic history of Crystal Cave, Southern Sierra Nevada, California., 2005, Despain J. D. , Stock G. M.
Cave development in mountainous regions is influenced by a number of factors, including steep catchments, highly variable allogenic recharge, large sediment fluxes, and rapid rates of canyon downcutting. Caves can help to quantify this latter process, provided their ages are determined. Here we investigate the history of 4.8 km long Crystal Cave, a complex, multiple level cave in the Sierra Nevada, through detailed geomorphic and geochronologic investigations. Crystal Cave is composed of six major levels spanning 64 m in elevation. The levels are comprised of large, low gradient conduit tubes, and are connected by numerous narrow, steeply descending canyon passages. Passages in the upstream end of the cave are significantly modified by collapse, while in the downstream section they are intact with an anastomotic maze overprinting. Dye tracing confirms that the cave stream originates from partial sinking of Yucca Creek to the north. Passage gradients, wall scallops, and sediment imbrication indicate that groundwater flowed consistently southeast through time, forming cave levels as bedrock incision of Cascade Creek lowered local base level. Although modern cave stream discharges are restricted to ~0.03 m3 s?1, likely due to passage collapse near the sink point ca. 0.5 million years ago (Ma), bedrock scallops and coarse clastic sediment in upper levels indicate paleodischarges as much as three orders of magnitude greater prior to that time. Infrequent high discharge flood events played an important role in passage development and sediment transport. Cosmogenic 26Al/10Be burial dating of sediment suggest that the majority of Crystal Cave formed rapidly between ca. 1.2 and 0.5 Ma; rates of cave development approach theoretical maximums, presumably due to a combination of allogenic recharge highly under-saturated with respect to calcite, and physical erosion by transported sediment.

CAVE SEDIMENTS FROM THE POSTOJNSKAPLANINSKA CAVE SYSTEM (SLOVENIA): EVIDENCE OF MULTI-PHASE EVOLUTION IN EPIPHREATIC ZONE, 2008, Zupan Hajna N. , Pruner P. , Mihevc A. , Schnabl P. , BosÁ, K P.

The Postojnska jama–Planinska jama cave system and number of smaller adjacent caves are developed in the Postojnski kras. These caves are located between two dextral strike-slip fault zones oriented in the Dinaric direction. The caves contain lithologically diversified cave fill, ranging from speleothems to allogenic fluvial sediments. The allogenic clastic material is derived from a single source, Eocene siliciclastics of the Pivka Basin. Small differences in mineral/petrologic composition between the sediments can be attributed to different degrees of weathering in the catchment area and homogenization of source sediments. Thick sequences of fine-grained laminated sediments, deposited from suspension are common. The depositional environment was mostly calm, but not completely stagnant. Such a sedimentary environment can be described as cave lacustrine, with deposition from pulsed flow. The homogeneity of the palaeomagnetic data suggests rapid deposition by a number of short-lived single-flood events over a few thousand years. This depositional style was favourable for recording of short-lived excursions in the palaeomagnetic field. The sediments were originally not expected to be older than Middle Quaternary in age (i.e. about 0.4 Ma). Later numerical dating (Th/U and ESR) indicated ages older than 0.53 ka. New palaeomagnetic data from selected sedimentary profiles within the cave system detected normal polarization in much of the profiles studied. Reverse polarized magnetozones, interpreted mostly as short- lived excursions of magnetic field, were detected in only a few places. Therefore, we interpreted most of the sediments as being younger than 0.78 Ma, belonging to different depositional phases within the Brunhes chron. Palaeomagnetic properties of two profiles in caves intersected by the artificial tunnel between Postojnska jama and Črna jama had reverse polarized magnetozones and of sediments in Zguba jama, may indicate an age much greater than 0.78 Ma. The cave system has evolved over a long period of time, governed by the functioning of Planinsko polje in the relation to the evolution of the resurgence area in Ljubljana Moor further to the east. General stabilization of the hydrological system with low hydraulic head led to the evolution of caves in epiphreatic and paragenetic conditions over a long time-span. Individual cave segments or passages were completely filled and exhumed several times during the evolution of the cave. Alternation of depositional and erosional phases may be connected with changing conditions within the cave system, the functioning of the resurgence area, collapse, climatic change, tectonic movement and the intrinsic mechanisms of contact karst.


Diffuse Flow Separation Within Karst Underground River at Ngreneng Cave Yogyakarta - Indonesia, 2009, Tjahyo Nugroho Adji, Heru Hendrayana, Sudarmadji, Suratman Woro
Diffuse flow is a dependable flow to recharge karst underground river within the dry season. This research is conducted at Ngreneng Cave, which is famous as the leakage tributary of Bribin River, the most important underground river in Gunungsewu karst area, Central Java. The objective of this research is to separate the karst flow components at Ngreneng Cave, in order to acknowledge the percentage of diffuse flow during the period of measurement. A water level data logger is installed during one year period to understand the variation of water level within dry and wet season. Furthermore, to define Stage Discharge Rating Curve, several discharge measurement is conducted within minimum, average and maximum discharge condition. Afterwards, the diffuse flow separation from its total flow is conducted by using automated base flow separation by digital filtering. The digital filtering values is acquired from the analysis of recession constant value in the occurrence of flood events in a year observation and related to the value of the base flow maximum indices (BFI) of karst aquifer. The result shows that during one year observation, Ngreneng Cave experiences 68 times of flooding, with digital filtering value of 0.992. In general, the monthly estimation of the diffuse flow percentage is very close to 80%, whereas it decreases to 41-59% during flood events.

SPATIAL AND TEMPORAL VARIATION OF HYDROGEOCHEMISTRY AND KARST FLOW PROPERTIES TO CHARACTERIZE KARST DYNAMIC SYSTEM IN BRIBIN UNDERGROUND RIVER, GUNUNG KIDUL REGENCY, DIY PROVINCE, 2010, Adji, Tjahyo Nugroho

This research is conducted in karst area, which is particularly enclosed by Bribin Underground River Catchment, Gunungkidul Regency. The objectives of this study are: (1) to understand spatial and temporal variation of flow characteristic as well as Diffuse Flow Proportion (PAD) of Bribin River; (2) to assess hydrogeochemistry and to recognize the relationship between hydrogeochemistry and flow characteristics of Bribin River, and (3) to define water agressivity of Bribin River with respect to carbonate mineral and to express the components of Karst Dynamic System (KDS) one-year behavior.
To define flow characteristic and PAD, three water level data loggers are installed within upper, lower and the leakage point along Bribin River continued by discharge measurement with the purpose of attaining stage-discharge rating curve. Afterwards, PAD is defined by conducting digital filtering baseflow separation approach after calculation of diffuse, fissure, and conduit recession constant. Next, to figure out hydrogeochemical condition, 120 sample of karst water are analyzed including rain, underground-river, and drip water. After that, scatter plots between hydrogeochemical parameters are conducted to achieve the correlation between PAD and hydrogeochemistry as well as to figure out hydrogeochemical processes to occur. Subsequently, Saturation Indices analysis with respect to calcite mineral and KDS components correlation is carried out to define karst water agressivity and its manners along flowpath of Bribin River.
The research’s result demonstrates that there is spatial and temporal differentiation of flow characteristics along Bribin River attributable to the comportment of karst aquifer toward discharging its diffuse, fissure, or conduit flow components, which consequence to the dissimilarity of PAD distribution along Bribin River. Accordingly, PAD characteristics result to dry season hydrogeochemical condition of Bribin River. However, wet season hydrogeochemical condition is more influenced by means of dilution by precipitation process within flood events, which exaggerates CO2 content of water. Generally, the upper-stream cave tend to more aggressive in dissolving limestone, contrast to down-steam cave that be inclined to precipitate carbonate mineral as a result of their differentiation of cavities configuration. In addition, down-stream cave is characterized by open system cavities, subsequent to the CO2 discharge to preserve dissolution process.


Geomorphologische Untersuchung und genetische Interpretation der Dachstein- Mammuthhle (sterreich), 2010, Plan L. , Xaver A.
The speleogenesis of Dachstein-Mammuthhle, the third-longest cave system in the Northern Calcareous Alps, has been discussed controversially in the past. Using morphologic mapping and morphometric data of the central parts of the cave in combination with modern speleogenetic models a re-evaluation of its development is attempted. The geometry of the cave and several small-scale features (e.g., scallops, karren, ceiling meanders), which date back to the early history of the cave formation, lead to the following interpretion: old phreatic parts (galleries, mazes, and some pits) developed under epiphreatic conditions during flood events, followed by younger, vadose canyon-shaft-systems. Scallops and sedimentary structures indicate a general westward flow direction. Sediments played an important role during the formation of the profiles, i.e. the profiles expanded upward (paragenesis) because the floor of the galleries was sealed by sediments, and only part of the cross section, as it can be seen today after removal of these sediments, was occupied by water. This is relevant for calculations of the palaeodischarge from mean scallop lengths and cross-section areas. Paragenesis can only be ruled out for the origin of the keyhole profile of the so-called Canyon (near the Westeingang) and the palaeodischarge was estimated to 16 m/s. This, however, was probably only a fraction of the total discharge of this system as several additional large galleries occur at the same cave level. The former catchment area was probably located south of todays Northern Calcareous Alps

Results 1 to 15 of 22
You probably didn't submit anything to search for