Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That inverted siphon is see water trap.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fractured (Keyword) returned 121 results for the whole karstbase:
Showing 1 to 15 of 121
Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data, , Nathalie Van Meir, David Jaeggi, Martin Herfort, Simon Loew, Philippe A. Pezard, Crard Lods,

Basic concepts in the theory of homogeneous liquids in fractured rocks,, 1960, Barenblatt, G. E. , I. P. Zheltov, And I. N. Kochina

Identification of the origin of oreforming solutions by the use of stable isotopes, 1977, Sheppard S. M. F. ,
SynopsisThe four major different types of water -- magmatic, metamorphic, sea water and/or connate, and meteoric water -- have characteristic hydrogen (D/H) and oxygen (18O/16O) isotope ratios. Applied to the analysis of isotopic data on hydrothermal minerals, fluid inclusions and waters from active geothermal systems, these ratios indicate that waters of several origins are involved with ore deposition in the volcanic and epizonal intrusive environment. Water of a single origin dominates main-stage mineralization in some deposits: magmatic -- Casapalca, Peru (Ag-Pb-Zn-Cu); meteoric -- Butte, Montana (Cu-Zn-Mn), epithermal deposits, e.g. Goldfield, Tonopah, Nevada (Ag-Au), Pachuca, Mexico (Ag-Au), San Juan Mountains District, Colorado (Ag-Au-Pb-Zn); sea water -- Troodos, Cyprus (Fe-Cu), Kuroko, Japan (Fe-Cu-Pb-Zn). Solutions of more than one origin are important in certain deposits (magmatic and meteoric -- porphyry copper and molybdenum deposits) and are present in many. In the porphyry Cu-Mo deposits the initial major ore transportation and alteration processes (K-feldspar-biotite alteration) are magmatic-hydrothermal events that occur at 750-500{degrees}C. These fluids are typically highly saline Na-K-Ca-Cl-rich brines (more than 15 wt % equivalent NaCl). The convecting meteoric-hydrothermal system that develops in the surrounding country rocks with relatively low integrated water/rock ratios (less than 0.5 atom % oxygen) subsequently collapses in on a waning magmatic-hydrothermal system at about 350-200{degrees}C. These fluids generally have moderate to low salinities (less than 15 wt % equivalent NaCl). Differences among these deposits are probably in part related to variations in the relative importance of the meteoric-hydrothermal versus the magmatic-hydrothermal events. The sulphur comes from the intrusion and possibly also from the country rocks. Deposits in which meteoric or sea water is the dominant constituent of the hydrothermal fluids come from epizonal intrusive and sub-oceanic environments where the volcanic country rocks are fractured or well jointed and highly permeable. Integrated water/rock ratios are typically high, with minimum values of 0.5 or higher (atom % oxygen) -- the magmatic water contribution is often drowned out'. Salinities are low to very low (less than 10 wt % equivalent NaCl), and temperatures are usually in the range 350-150{degrees}C. The intrusion supplies the energy to drive the large-scale convective circulation system. The sulphur comes from the intrusion, the country rocks and/or the sea water. Argillic alteration, which occurs to depths of several hundred metres, generated during supergene weathering in many of these deposits is isotopically distinguishable from hydrothermal clays

Sea Caves of King Island, 1979, Goede Albert, Harmon Russell, Kiernan Kevin

Investigation of two King Island sea caves developed in quartzitic rocks shows them to contain a wealth of clastic and chemical sediments. Clastic sediments consist of wave-rounded cobbles, debris cones, and angular rock fragments produced by frost weathering and crystal wedging. Chemical deposits include a variety of calcium carbonate speleothems and also gypsum occurring as wall crusts and blisters. The latter appear to be a speleothem type of rare occurrence. Growth of gypsum is responsible for some crystal wedging of the bedrock. Three basal stalagmite samples have been dated by the Th/U method indicating Late Pleistocene as well as Holocene speleothem growth. The caves are believed to have formed by preferential wave erosion during the Last Interglacial in altered and fractured quartzites. The evidence for pre-Holocene evolution of sea caves and geos in the Tasman region is summarised. Tasmania and the Bass Strait Islands provide a particularly favourable environment for the preservation of relict landforms on rocky coasts because of Late Quaternary uplift. The potential of further studies of sea caves to test two recently advanced archaeological hypotheses is discussed.


Traits gnraux de l'hydrologie karstique en Basse Cvenne, 1984, Fabre, G.
GENERAL FEATURES OF KARSTIC HYDROLOGY IN BASSE CEVENNE (FRANCE) - N to the town of Als (SE Massif Central and Cvennes), a very fractured carbonated belt outcrops. The karst concerns some facies of Trias, Lias-Dogger, Upper Jurassic and Lower Cretaceous. Karstic flows are of two types: toward W, convergent to the important springs of la Tour-Dauthunes, and toward E and divergent. Ggeneral characteristics are presented. Economic aspect is pointed out, just as karstic stream piracy.

Impact des proprits hydrodynamiques du substrat karstique sur la nature du sol en milieu mditerranen, 1989, Verheye, W. H.
The impact of the hydrodynamic properties of the karst substratum over the soil characteristic in mediterranean areas - The weathering and pedogenetic evolution on limestones in mediterranean areas leads to the formation of a more or less decarbonated red soil. This evolution passes through successive stages of decarbonatation, rubification and decalcification and can be associated with a colour change, which includes lithochromic, brown and red phases. It is obviously influenced by the hydrodynamic properties of the soils and by the underground drainage characteristics of the substratum: hence soils developed over almost impermeable marly limestones remain at the lithochromic and/or brown levels, and decarbonatation remains weak; on hard and fractured limestones, pedogenesis is much more active and, even if the weathering volume on this rather pure rocks is small, the soil profile becomes almost completely devoid of free lime; under certain conditions a slight decalcification of the soil sorption complex may even be observed.

Modeling of regional groundwater flow in fractured rock aquifers, PhD Thesis, 1990, Kraemer, S. R.

The regional movement of shallow groundwater in the fractured rock aquifer is examined through a conceptual-deterministic modeling approach. The computer program FRACNET represents the fracture zones as straight laminar flow conductors in connection to regional constant head boundaries within an impermeable rock matrix. Regional scale fracture zones are projected onto the horizontal plane, invoking the Dupuit-Forchheimer assumption for flow. The steady state flow solution for the two dimensional case is achieved by requiring nodal flow balances using a Gauss-Seidel iteration. Computer experiments based on statistically generated fracture networks demonstrate the emergence of preferred flow paths due to connectivity of fractures to sources or sinks of water, even in networks of uniformly distributed fractures of constant length and aperture. The implication is that discrete flow, often associated with the local scale, may maintain itself even at a regional scale. The distribution of uniform areal recharge is computed using the Analytic Element Method, and then coupled to the network flow solver to complete the regional water balance. The areal recharge weakens the development of preferential flow pathways. The possible replacement of a discrete fracture network by an equivalent porous medium is also investigated. A Mohr's circle analysis is presented to characterize the tensor relationship between the discharge vector and the piezometric gradient vector, even at scales below the representative elementary volume (REV). A consistent permeability tensor is sought in order to establish the REV scale and justify replacement of the discrete fracture network by an equivalent porous medium. Finally, hydrological factors influencing the chemical dissolution and initiation of conduits in carbonate (karst) terrain are examined. Based on hydrological considerations, and given the appropriate geochemical and hydrogeological conditions, the preferred flow paths are expected to develop with time into caves.


ORIGIN AND MORPHOLOGY OF LIMESTONE CAVES, 1991, Palmer A. N. ,
Limestone caves form along ground-water paths of greatest discharge and solutional aggressiveness. Flow routes that acquire increasing discharge accelerate in growth, while others languish with negligible growth. As discharge increases, a maximum rate of wall retreat is approached, typically about 0.01-0.1 cm/yr, determined by chemical kinetics but nearly unaffected by further increase in discharge. The time required to reach the maximum rate is nearly independent of kinetics and varies directly with flow distance and temperature and inversely with initial fracture width, discharge, gradient, and P(CO2). Most caves require 10(4) - 10(5) yr to reach traversable size. Their patterns depend on the mode of ground-water recharge. Sinkhole recharge forms branching caves with tributaries that join downstream as higher-order passages. Maze caves form where (1) steep gradients and great undersaturation allow many alternate paths to enlarge at similar rates or (2) discharge or renewal of undersaturation is uniform along many alternate routes. Flood water can form angular networks in fractured rock, anastomotic mazes along low-angle partings, or spongework where intergranular pores are dominant. Diffuse recharge also forms networks and spongework, often aided by mixing of chemically different waters. Ramiform caves, with sequential outward branches, are formed mainly by rising thermal or H2S-rich water. Dissolution rates in cooling water increase with discharge, CO2 content, temperature, and thermal gradient, but only at thermal gradients of more than 0.01-degrees-C/m can normal ground-water CO2 form caves without the aid of hypogenic acids or mixing. Artesian flow has no inherent tendency to form maze caves. Geologic structure and stratigraphy influence cave orientation and extent, but alone they do not determine branch-work versus maze character

ISOTOPE HYDROLOGICAL STUDY OF MEAN TRANSIT TIMES IN AN ALPINE BASIN (WIMBACHTAL, GERMANY), 1992, Maloszewski P. , Rauert W. , Trimborn P. , Herrmann A. , Rau R. ,
Measurements of tritium and O-18 concentrations in precipitation and runoff were used to provide further insight into the groundwater storage properties of the Wimbachtal Valley, a catchment area of 33.4 km2, extending between 636 and 2713 m a.s.l. in the Berchtesgaden Alps. The catchment includes three aquifer types: a dominant porous aquifer; a fractured dolomite; a karstic limestone aquifer. Employing a simple hydrological model, information about mean transit times of environmental tracers is derived for the groundwater runoff component and several karst springs from the application of the exponential and dispersion flow models to the isotopic input and output data. The mean transit times calculated from a dispersion model with transit times of 4.1 years for O-18 and 4.2 years for tritium, which agree well, allow calculation of total (mobile stagnant) groundwater storage volume, which is equivalent to 6.6 m of water depth. Direct runoff appears negligible as in many other cases

STRUCTURAL AND HYDROGEOLOGICAL ORIGIN OF TOWER KARST IN SOUTHERN CHINA (LIJIANG PLAIN IN THE GUILIN REGION), 1992, Drogue C, Bidaux P,
Spectacular towers (average 130 m high) are to be seen in the Lijiang plain near Guilin in middle and upper Devonian limestone forming a downthrown structural panel surrounded by the high relief of a cockpit karst. The limestone was fractured by at least three Triassic and Tertiary tectonic episodes. Statistical analysis of the altitudes of tower summits shows that they are distributed according to a log-normal law with a well marked mode at 250-280 m. This mode is very similar to that of the depression altitudes of the cockpit karst. It was deduced that tower summits and cockpit bottoms show that there was an ancient, relatively flat surface which was the basic level for flow in the surrounding karstic relief (water table at ground level). Fall in this ground water caused preferential karstic breakdown in very fractured zones, leaving the stronger blocks. This subsidence must have taken place in stages, as is shown by Pliocene and lower Quaternary fossil cavities at various altitudes of the towers. Observation of fracturing in the field, in aerial photographs and satellite images show that the edges of the towers are mainly transverse faults with sub-vertical planes

POLYGENETIC ORIGIN OF HRAD-VALLIS REGION OF MARS, 1992, Dehon Ra,
Hrad Vallis is located in the transition zone between Elysium Mons and Utopia Planitia. Near its origin, at the northern edge of Elysium lavas, Hrad Vallis is characterized by a low-sinuousity channel within a north-northwest-trending, broad, flat-floored valley. A nearby flat-floored valley is parallel to the Hrad trend and parallel to elongate depressions, fissures, and faults in the region. An apparent hierarchy of landforms provides insight into the origin of the features associated with Hrad Vallis. The sequence leading to the development of Hrad Vallis consists of the following (1) formation of isolated depressions as either karst depressions or thermokarst valleys along faults and fissures in response to circulating ground water; (2) expansion of depressions along structural trends to coalesce as composite valleys, and (3) incision of a channel on the floor of Hrad valley by continued discharge of water from the subsurface after its initial formation by nonfluvial processes. Mud flows, polygonally fractured terrain, and chaotic terrain near the head of the major valleys suggest thixotropic behavior of saturated, clay-rich materials. An extended period of time is indicated during which freely circulating water existed on id beneath the surface of Mars. Karst and thermokarst processes imply very different climatic regimes and different host materials. The presence of karst topography implies extensive deposition of carbonates or other soluble rocks, whereas the presence of thermokarst basins implies the existence of porous, water/ice-saturated clastic or volcaniclastic materials

DISLOCATION OF THE EVAPORITIC FORMATIONS UNDER TECTONIC AND DISSOLUTION CONTROLS - THE MODEL OF THE DINANTIAN EVAPORITES FROM VARISCAN AREA (NORTHERN FRANCE AND BELGIUM), 1993, Rouchy J. M. , Groessens E. , Laumondais A. ,
Within the Franco-Belgian segment of the Hercynian orogen, two thick Dinantian anhydritic formations are known, respectively in the Saint-Ghislain (765 m) and Epinoy 1 (904 m) wells. Nevertheless, occurrences of widespread extended breccias and of numerous pseudomorphs of gypsum/anhydrite in stratigraphically equivalent carbonate deposits (boreholes and outcrops), suggest a larger extent of the evaporitic conditions (fig. 1, 2). The present distribution of evaporites is controlled by palaeogeographical differentiation and post-depositional parameters such as tectonics and dissolution. These latter have dissected the deposits formerly present in all the structural units. By using depositional, diagenetic and deformational characters of these formations, the article provides a model for the reconstruction of a dislocated evaporitic basin. This segment of the Hercynian chain is schematically composed of two main units (fig. 1, 3) : (1) the autochthonous or parautochthonous deposits of the Namur synclinorium, (2) the Dinant nappe thrusted northward over the synclinorium of Namur. The major thrust surface is underlined by a complex fault bundle (faille du Midi) seismically recognized over more than 100 km. A complex system of thrust slices occurs at the Hercynian front. Except for local Cretaceous deposits, most of the studied area has been submitted to a long period of denudation since the Permian. Sedimentary, faunistic and geochemical data argue for a marine origin of the brines which have generated the evaporites interbedded with marine limestones. Sedimentary structures. - The thick evaporitic formations are composed of calcium-sulfates without any clear evidence of the former presence of more soluble salts (with the exception of a possible carbonate-sulfate breccia in the upper part of the Saint-Ghislain formation). As in all the deeply buried evaporitic formations, the anhydrite is the main sulfate component which displays all the usual facies : pseudomorphs after gypsum (fig. 4A, B), nodular and mosaic (fig. 4C), laminated. The gypsum was probably an important component during the depositional phase despite the predominant nodular pattern of the anhydrite. Early diagenetic nodular anhydrite may have grown during temporary emersion of the carbonates (sabkha environments), but this mechanism cannot explain the formation of the whole anhydrite. So, most of the anhydrite structures result from burial-controlled gypsum --> anhydrite conversion and from mechanical deformations. Moreover, a complex set of diagenetic processes leads to various authigenic minerals (celestite, fluorite, albite, native sulfur, quartz and fibrous silica) and to multistaged carbonate <> sulfate replacements (calcite and dolomite after sulfate, replacive anhydrite as idiomorphic poeciloblasts, veinlets, domino-like or stairstep monocrystals...). These mineral transformations observed ill boreholes and in outcrops have diversely been controlled during the complex evolution of the series as : depositional and diagenetic pore-fluid composition, pressure and temperature changes with burial, bacterial and thermochemical sulfate reduction, deep circulations favored by mechanical brecciation, mechanical stresses, role of groundwater during exhumation of the series. Deformational structures. - A great variety of deformational structures as rotational elongation, stretching, lamination, isoclinal microfolding, augen-like and mylonitic structures are generated by compressive tectonic stresses (fig. 4D to J). The similarities between tectonic-generated structures and sedimentary (lamination) or diagenetic (pseudo-nodules) features could lead lo misinterpretations. The calcareous interbeds have undergone brittle deformation the style and the importance of which depend of their relative thickness. Stretching, boudins, microfolds and augen structures F, H. I) affect the thin layers while thicker beds may be broken as large fractured blocks dragged within flown anhydrite leading to a mylonitic-like structure (fig, 4G). In such an inhomogeneous formation made of interlayered ductile (anhydrite) and brittle (carbonate) beds, the style and the intensity of the deformation vary with respect to the relative thickness of each of these components. Such deformational features of anhydrite may have an ubiquitous significance and can result either from compressive constraints or geostatic movements (halokinesis). Nevertheless, some data evidence a relation with regional tangential stresses: (1) increase of the deformation toward the bottom of the Saint-Ghislain Formation which is marked by a deep karst suggesting the presence of a mechanical discontinuity used as a drain for dissolving solutions (fig. 3, 4); (2) structural setting (reversed series, internal slidings) of the Epinoy 1 formation under the Midi thrust. However, tectonic stresses also induce flowing deformations which have contributed to cause their present discontinuity. It can be assumed that the evaporites played an active role for the buckling of the regional structure as detachment or gliding layers and more specifically for the genesis of duplex structures. Breccia genesis. - Great breccia horizons are widely distributed in outcrops as well as in the subsurface throughout the greater part of the Dinant and Namur units (fig. 2). The wide distribution of pseudomorphosed sulfates in outcrops and the stratigraphical correlation between breccia and Saint-Ghislain evaporitic masses (fig. 2) suggest that some breccia (although not all) have been originated from collapse after evaporites solution. Although some breccia may result from synsedimentary dissolution, studied occurrences show that most of dissolution processes started after the Hercynian deformation and, in some cases, were active until recently : elements made of lithified and fractured limestones (Llandelies quarries) (fig. 5A), preservation of pseudomorphs of late replacive anhydrite (Yves-Gomezee) (fig. 5B, C), deep karst associated with breccia (Douvrain, Saint Ghislain, Ghlin boreholes) (fig. 3, 4, 5D)). Locally, the final brecciation may have been favored by a mechanical fragmentation which controlled water circulations (fig. 5E). As postulated by De Magnee et al. [19861, the dissolution started mostly after the Permian denudation and continued until now in relation with deep circulations and surface weathering (fig. 6). So, the above-mentioned occurrences of the breccia are logically explained by collapse after dissolution of calcium-sulfates interbeds of significant thickness (the presence of salt is not yet demonstrated), but other Visean breccia may have a different origin (fig. 5F). So, these data prove the extension of thick evaporitic beds in all the structural units including the Dinant nappe, before dissolution and deformation. Implications. - Distribution of Visean evaporites in northern France and Belgium is inherited from a complicated paleogeographic, tectonic and post-tectonic history which has strongly modified their former facies, thicknesses and limits (fig. IA, 6). Diversified environments of deposition controlled by both a palaeogeographical differentiation and water level fluctuations led to the deposition of subaqueous (gypsum) or interstitial (gypsum, anhydrite) crystallization. Nevertheless, most of the anhydrite structures can be interpreted as resulting from burial conversion of gypsum to anhydrite rather than a generalized early diagenesis in sabkha-like conditions. Deformation of anhydrite caused by Hercynian tangential stresses and subsequent flow mechanisms, have completed the destruction of depositional and diagenetic features. The tectonic deformations allow us to consider the role of the evaporites in the Hercynian deformations. The evaporites supplied detachment and gliding planes as suggested for the base of the Saint-Ghislain Formation and demonstrated by the structural setting of Epinoy 1 evaporites in reverse position and in a multi-system of thrust-slices below the Midi overthrust (fig. 7). So, although the area in which evaporation and precipitation took place cannot be exactly delineated in geographic extent, all the data evidence that the isolated thick anhydritic deposits represent relics of more widespread evaporites extending more or less throughout the different structural units of this Hercynian segment (fig. 1B). Their present discontinuity results from the combination of a depositional differentiation, mechanical deformations and/or dissolution

Spatial sampling considerations and their applications to characterizing fractured rock and karst systems, 1993, Benson Rc, Yuhr L,

Flow characterization through heat transfer evidence in a carbonate fractured medium: first approach, 1993, Benderitter Y. , Roy B. , Tabbagh A.

SHALLOW KARST EXPLORATION USING MT-VLF AND DC RESISTIVITY METHODS, 1995, Guerin R. , Benderitter Y. ,
A geophysical test was carried out over a well-located and fairly embedded karstic conduit. The MT-VLF method was selected because of its high resolution and its ability to provide a resistivity parameter sensitive to water and clay. This method was used together with DC resistivity methods which allow vertical adjustment of the VLF data and show consistency between the investigation and target depths. After correcting the deformations due to the polarization of the primary field, the MT-VLF data show clearly, in the central part of the site, that the conduit does not coincide with an anomaly axis but coincides with the boundary between a conductive area and a resistive area. 2D modelling confirms that direct detection of the conduit is not feasible and that the conduit is located close to a conductive zone corresponding to a completely clay-filled fractured zone. This situation was observed on the whole site and the conduit seemed systematically to thread its way between the conductive zones to join the outlet. The distribution of the conductive fractured zones and the direction of the hydraulic gradient were two important elements in predicting the location of the conduits. A 3D approach would increase the probability of finding the conduits in such a case

Results 1 to 15 of 121
You probably didn't submit anything to search for